

REPUBLIC OF LEBANON

COUNCIL FOR DEVELOPMENT AND RECONSTRUCTION

ENVIRONMENTAL IMPACT ASSESSMENT FOR SOUR WASTEWATER PROJECT

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

JUNE 2010

ARCHIVES ENREGISTRE LE 2 8 JUIN 2018

Rafik El - Khoury & Partners Consulting — Engineers

i

Environmental Impact Assessment Sour Wastewater Project

1

1

ACKNOWLEDGEMENTS

Special thanks and gratitude are extended to the staff at the Council for Development and Reconstruction (CDR), the Ministry of Environment (MoE), Head and staff of Sour and Aabbasiyeh Municipalities, and other concerned stakeholders in the area for their support and cooperation throughout the preparation of the this Environmental Impact Assessment.

reject description

The male components of the project including the () Confection Networks and Preming (follows, 7) Whiteware (reaching Plan and J) See Outsil are summarized to the sections of planks.

Environment Network and Domining Stations

Mantellage networks consists of main collection topics that serve a group of sy proposition, resonances that forms is exclusively and of the sould be consistently, and proton avbratitude. The project were species from Bourgi type to Ris 13 dan at the constition of the war is Remissionly and Cheim or initialized with and along type or of Sour and its subdow. The man rely provided to provide these propaging information for spirit, through the description of a public of the "Subdow of Cheim or initialized with and along the end of Sour and its subdow. The man rely provided to appear these propaging information in the proper area is the rescalation length of the "Subdow of the provide the board of the transmission of the rescalation length of the "Subdow of the provide the board of the tendent of the proper area is the rescalation length of the "Subdow of the provide the board of the tendent of the proper area is the rescalation of the provide the provide the provide the board of the tendent of the proper area is the rescalation of the provide errors, when the provide the provide the tendent of the proper area is the provide to the tendent of the tendent of the provide the tendent of tendent of the tendent of the tendent of the tendent of ten

Environmental Impact Assessment Sour Wastewater Project

EXECUTIVE SUMMARY

Introduction

This report presents an Environmental Impact Assessment (EIA) of the Sour Wastewater Project that will serve for the horizon year 2040, the Sour area including, in addition to the City of Sour, 48 villages and populations agglomerations. The scope of work implemented in the preparation of the EIA report consists of the following:

- Description of the proposed project
- Definition of existing legal and administrative framework
- Definition of baseline environmental conditions
- Identification and analysis of potential environmental impacts
- Analysis of potential alternatives
- Development of an environmental mitigation plan
- Development of an environmental monitoring plan
- Institutional strengthening for environmental management
- Public participation and consultation activities

Project description

The main components of the project including the 1) Collection Networks and Pumping stations, 2) Wastewater Treatment Plant and 3) Sea Outfall are summarized in the sections below.

Wastewater Network and Pumping Stations

Wastewater networks consists of main collection trunks that serve a group of 49 population agglomerates that forms a catchment area of the same hydrogeology and hydrology formations. The project area extends from Bourghliye to Ras El Ain at the coastal line and to Rashkananey and Chehour inland; it also includes the city of Sour and its suburbs. The networks consists of various lines having different lengths, however, the cumulative length of the all the lines are calculated to be 139 km. As the project area is characterized by hilly terrain, about 17 pumping stations were required to alternate the obstacle emerging from difference in elevation and ensure a smooth flow velocity of transported sewers.

Wastewater Treatment Plant

The wastewater treatment plant in Sour area is proposed to reach secondary treatment level using biological treatment. For domestic wastewater, the major objective of biological treatment is to reduce the carbonaceous BOD (Biochemical Oxygen Demand), coagulate "non-settleable" colloidal solids, and stabilize organic matter.

Sour WWTP components:

- 1. Pretreatment system:
 - Inlet chamber for gases removal and large objects removal.
 - Coarse screening (50 mm).
 - Pumping station to the fine screening and degritting, degreasing zone, MCC for pretreatment.
- 2. Screening and degritting, degreasing system:
 - Fine screening (8mm).
 - Longitudinal grit and grease removal.
- 3. Buffer tank for overflow load system.
- 4. Primary settling system:
 - Distribution chamber from degritting, degreasing area to the primary settlers
 - 4 concrete primary settlers
 - Primary sludge pumping
- 5. Biological treatment system:
 - Flow distribution to biological tanks.
 - 2 biological treatment assimilation tanks with 2 biological treatment contact tanks in stage 1, and 3 by 3 in stage 2, 4 by 4 in stage 3.
 - SAS pumping station to final clarifiers
- 6. Flow distribution tank and recirculation pumping station
- 7. Clarifier system:
 - 4 clarifiers (2 in stage 1; for the later stages one clarifier is to be added per stage)
- 8. UV disinfection system
- 9. Irrigation pumping station
- 10. Air production system:
 - 4 air blowers to produce process air to the biological treatment area
- 11. Sludge treatment system:
 - 2 primary sludge thickening units for primary sludge coming from primary settlers.
 - Gravity belt thickeners for biological sludge.

- Sludge storage area from biological treatment.
- Mixing tank for primary sludge and biological sludge.
- 2 primary digester in case of stage I, and a place of two additional digesters for the implementation of stage II.
- Centrifugal dewatering sludge.
- 2 secondary digesters for sludge.
- Biogas storage tank: stores the biogas from digesters to supply the engine biogas or to heat the inlet of digester
- 12. Odor treatment system: it consists of biological odor removal system (ALIZAIR).

Sea Outfall

The design of the outfall is based on an average dry weather flow of 540l/s and a peak flow of 930l/s. It comprises the following sections:

- 1- Marine section: a bore sea outfall pipeline of nominal diameter 800 mm and length of 1355 mm plus a diffuser (800 mm x 500mm) section of 145 m length. The pipeline will be laid in trench in the sea bed to a depth reaching up to 13 m.
- 2- Land section: a low pressure pipeline of nominal diameter of 800 mm and length of 585 m, from the wastewater plant to the sea shore.

Legal and administrative framework

Several ministries and government bodies are responsible for wastewater management related activities in Lebanon including the:

- Ministry of Energy and Water (MoEW)
- Regional Water and Wastewater Establishments
- Ministry of Environment (MoE)
- Ministry of Interior and Municipal Affairs (MoIMA) Municipalities
- Council for Development and Reconstruction (CDR)
- Ministry of Public Health (MoPH)

The project will involve primarily the CDR, South Lebanon Water and Wastewater Establishment and the MoEW. Upon completion of the design and construction phase (Design-Build Contract) of the Wastewater Treatment Plant and Sea Outfall (about 2 years), the Contractor will be responsible for plant operation and maintenance for a period

of five years, with the option to extend this period up to 25 years by mutual agreement between the contractor and CDR.

While Lebanon has a large body of sector-specific environmental laws and regulations, some dating back to the 1930's, generally speaking, these laws and regulations require updating and integration within a well-articulated environmental policy framework. The Lebanese EIA draft decree provides a list of project types that require an EIA. Included in this list are projects that involve the construction of wastewater treatment plants similar to the proposed Sour WWTP. The decree outlines the elements to be examined in an EIA report, which are consistent with the scope of work described above. In addition, the MoE has introduced national quality standards for air, water, and soil in the context of Decision No. 52/1 dated July 1996. Recently Decision No.8/1 dated March 2001 included standards for the discharge of wastewater to the sea, to surface water and to sewerage systems. Both decisions are applicable in the context of the proposed Sour Wastewater Project.

Description of the environment

Baseline data and field and marine surveys conducted for the project area include a description of the physical, biological, and socio-economic environment (Table I). These were collected, synthesized, and analyzed in the context of Sour Wastewater Project.

Climate and meteorology Surface water Groundwater Geology and soil Tides, waves and currents Bathymetry
Surface water Groundwater Geology and soil Tides, waves and currents Bathymetry
Groundwater Geology and soil Tides, waves and currents Bathymetry
Geology and soil Tides, waves and currents Bathymetry
Tides, waves and currents Bathymetry
Bathymetry
Convertee colimiter
Seawater samily
Seawater temperature
Seawater quality
Topography
Ambient air quality
Ambient noise levels
Marine biodiversity
Terrestrial biodiversity

Table L	Description	of the	environment
---------	-------------	--------	-------------

Assessment of Environmental Impacts

The environmental impact analysis showed that environmental impacts will occur during both the construction and operation phases of the project particularly with respect to seawater quality, air quality, dust and noise emissions, visual intrusion, waste generation, safety concerns, and socio-economic impacts. During the operation phase, the analysis showed that the proposed project will result in positive impacts related to the potential increase in job opportunities for locals, enhancing seawater quality along Sour coastline, reducing environmental stress to the marine environment, as well as enhancing public health. On the other hand, several adverse aspects that are associated with the project require the adoption of proper environmental management plans to ensure the sustainability of the project and its expected benefits. Table II provides a qualitative summary of the significance of potential environmental impacts that are associated with both the construction and operation phases.

Impact	Construction	Operation	Comment
Air quality	0/-	0/-/	depending on sludge management option
Traffic		-/++	depending on the attracted traffic volume with respect to the capacity of the constructed roads
Noise	-	-	
Odors	0/-	-/	depending on sludge management option
Seawater quality	- Alter States	-/+++	
Marine biodiversity	- Rob	_/+++	
Terrestrial biodiversity	0	++	
Resource use (water and energy)	-	/0/+	
Groundwater and soil quality	- hierostical re	-/++	surpled the field of W
Solid wastes and sludge generation	e = 74) is a n	and the second	ectinology for histog
Health and safety		_/+++	a min we have be served
Landscape and visual intrusions	0/-	0	Rota Generalia
Socio-economics	-/+++	_/+++	
+++High positive impact++Moderate positive impact+Low positive impact0Neutral impact	ct High ct Moder ct - Low n	negative in ate negative in egative impact	npact npact

Table II. Summary of impact analysis

Analysis of Alternatives

The analysis of alternatives describes the project implementation as compared to the "do nothing" scenario, assesses the suitability of the selected site, and compares alternative treatment and disinfection technologies.

In the "Do Nothing" scenario, wastewater will continue to be discharged into the environment with no prior treatment. This will increase the possibility of seawater, groundwater and surface water pollution, soil contamination, odor generation, in addition to potential adverse health impacts caused by the breeding of mosquitoes and vectors of diseases. Table III presents a comparative evaluation of constructing the plant versus the "do nothing" scenario.

Impact		Construction	Operation	"Do nothing" scenario
Air quality		0/-	0/-/	0
Traffic	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-	-	0
Noise	A STATE OF THE STATE	6 H 1- 0 (2)	-	0
Odors		0/-	-/	
Seawater quality		-	_/++++	
Marine biodiversity			_/+++	
Groundwater and soil quality		1.1.1	-/0	State of the
Solid v	wastes and sludge generation			0
Health	and safety	-	_/+++	
Landso	cape and visual intrusions	0/-	0	She man di la
Socio-economics		_/+++	_/+++	
+++ ++ + 0	High positive impact Moderate positive impact Low positive impact Neutral impact	High negat Moderate neg - Low negative i	ive impact gative impact mpact	water of Sour V V disinfection (

Table III. Comparative evaluation with the 'do nothing scenario'

A comparative matrix for assessing biological processes is presented in Table IV. While the activated sludge system (score = 74) is a most favorable technology for biological stabilization of domestic wastewater, using the adopted criteria and weighing system, its score is comparable with that of the trickling filters, UASB, and RBCs (score = 73, 70, and 66, respectively). As such, based on this analysis, any of these four technologies is environmentally acceptable. A more detailed comparison is recommended once the specific design of the treatment options is determined. The two least favorable technologies were the aerated lagoon and the stabilization pond (scores = 57 and 59, respectively), owing to their large area requirements and lower removal efficiency.

		Techn	ology 1	Techn	ology 2	Techr	ology 3	Techn	ology 4	Techn	ology 5	Techn	ology 6
Parameter	Weight	Activated Sludge		Aerated lagoons		Trickling filters		RBC		Stabilization ponds		UASB	
		R	W	R	W	R	W	R	W	R	W	R	W
Proven technology	2	5	10	3	6	5	10	4	8	3	6	5	10
Area	3	3	9	1	3	3	9	3	9	1	3	3	9
O/M requirements	2	3	6	3	6	2	4	2	4	4	8	3	6
Energy requirements	2	2	4	3	6	3	6	3	6	3	6	4	8
Capital cost	2	4	8	5	10	3	6	3	6	5	10	4	8
O/M costs	2	4	8	5	10	3	6	3	6	5	10	3	6
Removal efficiency	2	4	8	2	4 ·	4	8	3	6	2	4	4	8
Odor generation	3	3	9	2	6	3	9	3	9	2	6	2	6
Public nuisance	3	4	12	2	6	4	12	4	12	2	6	3	9
Total			74		57		70		66		59		70

Table IV. Comparative matrix for commonly used biological processes

A similar comparative matrix for assessing the four most commonly used disinfectants with respect to a set of predefined criteria is presented in Table V. Based on this analysis, the two most favorable disinfectants for the treatment of wastewater at Sour WWTP, using the adopted criteria and weighing system, are chlorine and UV disinfection (score = 49). The latter has recently been emerging as a preferable more environmentally friendly technology despite its higher cost due to increased concerns about chlorination by-products and hence it is the favorable technology adopted in the case of Sour WWTP. As for chlorine dioxide disinfection, it is the least favorable, with a score of 43, but is not far from ozone disinfection, with a score of 45.

Table		12/1/1	THE REAL	Real Providence	Score	Since.	- Lie		
Parameter	Weight	Chlorine		Chlorine dioxide		Ozone		UV radiation	
		R	W	R	W	R	W	R	W
Availability/ cost	3	3	9	2	6	1	3	1	3
Deodorizing ability	1	3	3	3	3	3	3	0	0
Interaction with	2	2	4	1	2	2	4	3	6
corrosiveness	3	1	3	1	3	1	3	3	9
Toxicity to higher	3	1	3	2	6	2	6	2	6
Penetration	2	3	6	3	6	3	6	2	4
Fefetu concern	3	1	3	1	3	2	6	3	9
Stability	2	2	4 ·	1	2	1	2	0	0
Toxicity to microorganisms	2	3	6	3	6	3	6	3	6
Toxicity at ambient temperature	2	3	6	3	6	3	6	3	6
Total	n nacion	a direct	47	0.000	43		45		4

Table V. Comparison of characteristics of commonly used disinfectants

Two alternatives for safe sludge disposal can be considered in the project:

- Disposal in a local landfill
- Use in agricultural activities

The adverse pollutants that may exist in sludge are heavy metals. These may be considered of major concern to the environment when sludge is disposed of in landfills or used in agriculture as soil fertilizers. The raw wastewater collected from the different communities and facilities in the project area is expected to have low concentrations of heavy metals. The industries in the area are not characterized as heavy industries and as such are not expected to discharge wastewater with significant levels of heavy metals.

Environmental mitigation plan

The primary adverse environmental impacts that are associated with the construction and operation phases of Sour Wastewater Project can be minimized by careful planning and staging of construction activities, adopting proper management practices during operation and relying on effective environmental monitoring and training to support management ----

decisions. Tables VII and VIII summarize proposed elements of the mitigation plan that will be adopted during the construction and operation phases of the project, namely the WWTP and Sea Outfall. Note that the details of the mitigation measures must be made part of the design proper. During both the construction and operation phases, the implementing responsibilities for the mitigation measures include the contractor(s) and consultant(s); the supervising authorities include the CDR, the MoEW, South Lebanon Water Establishment, the MoIM, and the MoE.

Impact	Mitigation measures
Air quality	Water surfaces
	Use chemicals to treat exposed surfaces
	Install windbreaks or source enclosures to reduce surface wind speed
	Pave heavily-used roads
	Cover the road surface with a new material of lower silt content
	Maintain roads regularly
	Maintain good housekeeping practices
	Properly maintain trucks and on-site equipment
	Adopt a traffic management plan while avoiding congested routes
	Ensure quality of diesel fuel used with on-site equipment
	Turn off all equipment when not in use
Traffic	Study possibility of construction during night hours
	Disseminate information regarding construction schedule
	Provide proper planning and development of a traffic control plan
	Guide motorists through construction zones in a clear and safe mannes
	(adequate warning, signing, delineation and channeling at least 500 m down
	and up-gradient from the construction site)
	Develop and communicate preliminary routing schemes where needed
Street or other	Limit the movement of heavy machinery to off-peak hours.
Noise	Erect noise barriers along active work sites
	Install vegetative screens where practical
	Operate on-site well-maintained mechanical equipment only
	Shut down equipment that may be intermittent in use between work periods or
	throttle them down to a minimum
	Utilize silencers or mufflers on construction equipment
	Properly maintain construction equipment during construction works
	Use material stockpiles and other structures to screen noise from on-site
	construction activities
	Schedule noisy activities during daytime periods
	Construct noise barriers along roadside
	Provide noise enclosures or semi-enclosures
	Install noise reducing road surfaces (such as quiet payements)
	Improve noise insulation of windows
dors	Install odor control system in the WWTP and Pumping Stations
	Install physical covers over odor emitting sections of the plant where practical
	and feasible
	Fit biotechnological treatment systems (bioscrubbers, biotrickling filters, and
	biofilters)

Table	VII.	Proposed	mitigation	measures	during	the	construction	phase
-------	------	----------	------------	----------	--------	-----	--------------	-------

EIA Report

Impact	Mitigation measures
Seawater	Carefully load barges to avoid splashing of material
quality	Fit barges used for the transport of dredged materials with tight bottom seals
1	Fill barges to a level which ensures that material does not spill over during
	loading and transport to the disposal site
	Adopt good housekeeping measures to reduce the presence of foam, oil,
RIE CLEOPADU	grease or litter in the water
	Direct surface run-off into storm drains via adequately designed sand/silt
	removal facilities
	Provide channels, earth bunds or sand bag barriers on-site to properly direct
	stormwater to silt removal facilities
1 Lunder	Discharge rainwater pumped out from trenches or foundation excavations into
a series and	storm drains via silt removal facilities
	Cover open stockpiles of construction materials with tarpaulin or similar
	fabric during rainstorms events
	Prepare guidelines and procedures for immediate clean-up actions following
	any spillages of oil, fuel or chemicals
Marine	Prohibit disposal of food, oil, sewerage, or chemical wastes directly into the
biodiversity	marine environment
	If suction hoppers are to be used, avoid ecologically sensitive areas
Groundwater	Properly store chemicals on-site
and soil	Install natural or synthetic liners belieath chemical storage tanks
quality	Provide proper surface dramage
HIN A STRUCT	Minimize on-site water and chemical usage (on, including and rece)
unrusions	Limit exposure of the son to accidental releases of pondumes
Descurse use	Adopt dry cleaning practices prior to water cleaning of working areas and
Resource use	vehicles
	Use energy-efficient construction equipment
	Properly operate and maintain equipment
	Turn off equipment whenever not in use
Waste and	Reduce or eliminate over-ordering of construction materials
sludge	Sort construction and demolition wastes into various categories
generation	Re-use/recycle construction and demolition wastes on site whenever feasible
8	Use reusable non-timber formwork and temporary works
	Make use of any uncontaminated soil on site for landscape works
	Segregate chemical wastes
	Store chemical wastes in a separate area that has an impermeable floor,
	adequate ventilation and a roof
	Store chemical wastes in corrosion resistant containers
, ,	Label all chemical wastes containers in English and Arabic
	Store general refuse generated on-site in enclosed bins or compaction units
	separate from construction and chemical wastes
	Draft agreement with the solid waste collector in Sour area
	Prohibit burning of refuse on construction sites
	Provide separate, labeled bins for aluminum cans
	Establish a recording system for the amount of waste generated, recycled and
	disposed of (including the disposal sites)
	Train workers on the concepts of site cleaniness and on appropriate waste
	management procedures

Environmental Impact Assessment Sour Wastewater Project

Impact	Mitigation measures
Health and	Restrict access to the construction site by proper fencing
safety	Establish buffering areas around the site
barety	Provide guards on entrances and exits to the site
	Install warning signs at the entrance of the site to prohibit public access
Ere 15	Provide training to a dedicated staff about the fundamentals of occupational health and safety procedures
	Provide appropriate personal protective equipment (PPE)
	Adequate loading and off-loading space
	Develop an emergency response plan
	Provide on-site medical facility/first aid
	Provide appropriate lighting during night-time works
	Implement speed limits for trucks entering and exiting the site and from the highway
	Follow CDR guidelines as well as recognized world practices for health and
	Provide fire-fighting equipment such as dry powder extinguishers within the
	Conduct annual fire-fighting and leak checks training drills for the operating
	staff
	pose fire risks
Landscape	Enclose site with non-transparent fencing to minimize visual impacts
and visual	Prohibit vehicles from parking outside the fenced boundary of Sour WWTP
intrusions	Preserve existing vegetation when feasible
	Select appropriate paint colors for the exterior of the plant to help it blend with the surroundings
	Select construction materials that will blend with the background
	Select architectural designs that will blend with the surrounding features of the milieu
	Incorporate underground utilities (to the extent possible) to house electrical,
6	Comply with the building codes of the area and reduce the construction of
	elevated structures
	Open areas adjacent to erected structures of the treatment plant should be
	Dense planting should include: Eucalyptus Div. Sp (every 10 to 12m), Ficus
	Nitida (every 2 to 3m), Ficus Elastica (every 2 to 3m), Casuarina Equisetifolia
	(every 4 to 5m), Leylande (every 1 to 211)
	enhancement: Nerium Orleander, Dodonea Viscosa, Duranta, Thevetia
· · · · ·	Specimen trees may include Tamarix, Bamboo, Aurea
	Select and enforce designs that will maximize the unbarred view of the sea
	from most areas within the region of influence
Socio-	Provide community in the immediate vicinity of Sour WWTP priority in terms
economic	of job opportunities
	Restrict movement of construction machinery outside the site during peak
in insplaces	traffic hours

Impact	Mitigation measures
Air quality	Store the generated biogas (in the case where anaerobic digestion of sludge is
run quanty	adopted) and use as power source within the plant
Traffic	Limit the movement of heavy machinery to off-peak hours and provide prior
TTUTTO	notification as well as adequate traffic signs on the roads leading to the site at
and an and a second	least 500 m down and up-gradient
	Dewatering of sludge (in the case of landfilling) to a maximum moisture
	content of 70 percent to minimize transportation requirements
Noise	Install mufflers and noise barriers around the air blowers and pumps
	Enclose noisy equipment
Seawater	Limit emergency discharge to primary treated wastewater
quality	Emergency storage should be accounted for in order to temporarily hold
1	sewage overflows in case of operational emergencies
	Construct an overflow outfall pipe in the case of system surge or shut down
	(as specified by the bidding document)
1.140.001.001	Restrict necessary shutdown of the plant for operational adjustments to the
10000	shortest period possible with minimum flow at the inlet works and following
A REPORT OF	approval by the CDR representative
S Usien nes	Perform continuous maintenance checks to assure system functionality
승규가 너 승규는	Schedule repair and equipment replacement operations to conicide with on
1	peak hours
1. San 1. San	Provide appropriate training to a dedicated stall
1.4 1.68 1.7.24	Conduct a rigorous monitoring program on site and at identified receptors
	Provide backup power source on-site
Odors	Maintain odor control systems
CARLES INC.	Maintain physical covers over odor emitting sections of the plant and
and the second of	pumping stations
and the second	Maintain chemical odor scrubbling systems and or biotecomorogical and
	systems
Marine	Ensure that discharges to the marme environment company
biodiversity	standards
Terrestrial	water the site to maintain the adopted intesecting programment plant that may
biodiversity	impact of dust generated noni the operation of the second second
	Brabibit hunting of birds and reptiles by personnel as well as prohibiting the
	diamonal of wastes bazardous and chemical material in non- allocated areas to
Lindon - La	avoid spillage and contact with fauna
Descurrae 1160	Adopt dry cleaning practices prior to water cleaning of working areas and
Resource use	valicles
(water and	Reuse treated wastewater (after secondary treatment) for landscaping within
energy)	Sour WWTP
1	Devise a plan for the collection and reuse of the generated methane (in case
	anaerobic digestion is opted for)
	Install energy efficient equipment, machinery, ventilation, lighting, and
	numps
Groundwater	Contain spills and develop procedures for emergency clean-up
quality	Ensure proper storage of sludge and discharge of wastewater into the overflow
quanty	outfall
	Avoiding the application of agrochemicals during on-site landscaping
	Avoluting the approximent of agreeting

Table VIII. Proposed mitigation measures during the operation phase

l

J

.

EIA Report

Impact	Mitigation measures
Waste and	Dispose of screenings, grit sand, debris and residuals removed from the
sludge	wastewater or generated at the treatment plant at a permitted disposal site
generation	Dispose of digested sludge in a permitted landfill or reuse in agricultural lands
Landscape	Preserve existing vegetation when feasible
and visual	Maintain landscaped areas in order to prevent the loss of plants and grass by
intrusions	means of uncontrolled growth, diseases, insects, absence of nutrients, extreme
spectra photoes	climatic conditions and others
Disting could	Remove waste and debris on a weekly basis from the landscaped areas
Socio-	Conduct an environmental awareness workshop to introduce the public at
economic	large to the benefits of installing and operating a wastewater treatment plant
coononno	sea outfall numping stations
Health and	Restrict access to the wastewater treatment plant by proper fencing
safety	Establish a huffering area around the plant
Suloty	Install warning signs at the entrance of the WWTP
	Provide training to the staff about the fundamentals of occupational health and
	safety procedures s
	Provide appropriate Personal Protective Equipment (PDE)
	Provide appropriate reisonal riolective Equipinent (FFE)
	Conduct regular maintenance of equipment and econocially of encorrelia
	digesters
	Drevent the stagnation of exposed water volumes to hamper insect and vector
	breeding
	Prohibit dirt dampness water oil and other substances within the electrical
	plant
	Conduct insulation tests within the electrical plant prior to operation
	Install warning signs in the provimity of hot pines, electrical connections and
	pressure relief values
	Lifebelts should be provided in prominent locations adjacent to all open tanks
	and channels
	Clear walkways of any debris
	Fit walkways of any depils
	finished ground level with handrails and toe boards
	Safequarded stands should be provided for maintenance works at scraper
	bridges and at actuators
	Portable gas warning devices lifebelts and securing devices should be
	provided to workers upon entrance into manholes
	Position sofety showers at all strategic points in the treatment works
	Provide first aid haves at low points around the plant
	Follow CDP, guidelines as well as recognized world practice for health and
	sofety
	Provide Fire-fighting equipment such as dry nowder extinguishers within the
	premises of the plant
	Conduct annual fire fighting and look checks training drills for the anomating
	staff
	Stall Drohihit smoking as well as litter or wood build up in the area as these more
	romon shoking as well as filler of weed build up in the area as these may
	pose me nsks

Environmental monitoring plan

Monitoring of air quality, noise levels, seawater quality, groundwater (in case of groundwater pumping), waste management practices, health and safety, landscape, and socio-economics is proposed for all components of Sour Wastewater Project. In addition, performance monitoring of the plant is proposed, in consistency with bidding documents. During construction and operation phases, the implementing responsibilities include the contractor(s) and consultant(s), while the supervising authorities include CDR, MoEW, MoIM, and MoE. Table VIII presents a summary of the monitoring plan.

-

1

.

*

Impact	Monitoring means	Parameters	Phase	Location
	Sampling	TSP/PM-10	Construction	Fishermen port
	Sampling	CO, NO ₂ , SO ₂ , Dust, TOC, HCI, HF		In the proximity of Sour WV (locations TRD)
Air quality		All parameters listed hereunder	Operation	

Impact	means	Parameters	Phase	Location	1
	Sampling	TSP/PM_10			rrequency
	0		Construction	Fishermen port	Monthly
:	Sampling	CO, NO ₂ , SO ₂ , Dust, TOC, HCI, HF		In the proximity of Sour WWTP (locations TBD)	Upon complaints Monthly Upon complaints
Aır quality		All parameters listed hereunder	Operation		Quarterly
		CO, NO ₂ , SO ₂ , TSP, CH ₄			Quarterly Upon complaints Bi-annual
Noice	Sampling	Leq (dBA)	Construction	at a 500 m radius	Monthly
	Sampling	Leq (dBA)	Operation	at the buildings separating the site from the highway	Upon complaints Quarterly
Odors			1	Darimation of the alternation	Upon complaints
	Olfactory test Sampling	H ₂ S (ppb)	Operation	r cumerer of the plant	Daily Upon complaints
	Sampling	TSS, DO		Dredging sites	Monthly
Seawater				(seawater at 3 depths*)	Upon complaints
quality		TSS, DO	Construction	100, 300, and 500 m along the sediment plume at the dredging site (at 3 depths*)	Quarterly for QA/QC

Rafik El Khoury & Partners

xvi

1

Environmental Impact Assessment Sour Wastewater Project

mpact	Monitoring means	Parameters	Phase	Location	Frequency
	Sampling	TSS, DO, Total and Fecal Coliforms		Same as above	Quarterly Upon complaints
		Five selected heavy metals	Operation .	Sediment	Bi-annual
		(iron, manganese, lead, cadmium, zinc, mercury, arsenic, selenium) for			Quarterly Upon complaints
		pH, temperature, BOD5,	Operation	Final effluent	Daily
		total nitrogen, TSS, Total and Fecal Coliforms,			and an and a second
	- Handara	Intestinal nematodes (Ascaris and Trichuris	Combrattoo		Contraction of
	N	species and hookworms, only in the case of reuse)		Final effluent	Monthly
		OA/OC tests for all			Quarterly
	Contractor	components			
[errestrial iodiversity	Visual inspection and photographic documentation	General condition of the floral cover	Operation	Landscaped areas within Sour WWTP	Quarterly
Resource use water and	Metering	Water and energy consumption	Construction	Sour WWTP	Continuous

Rafik El Khoury & Partners

xvii

į

ļ

Į,

EIA Report

22

.

Impact	Monitoring means	Parameters	Phase	Location	Frequency
energy)	Sampling	Intestinal nematodes (Ascaris and Trichuris species and hookworms, only in the case of	Operation	Sour WWTP	Daily
·	9	Water and energy consumption			Continuous
	Sampling	TSS, conductivity, salinity, and Fecal Coliforms		Pumped wells	Quarterly (in case of
Groundwater quality			Operation	Locate at least two wells at the northern and southern site boundaries	pumping)
6		QA/QC tests for all parameters			Bi-annually
	Waste audit	Generation, storage,		Sour WWTP site	Quarterly
		recycling, transport, and disposal	Construction		
	Waste audit	Generation, storage,		Solid wastes	Quarterly
		recycling, transport, and disposal			
Solid waste	Sampling	- - -		stabilized sludge	Monthly
and sludge		Quantity and five selected heavy metals (mercury,			
		beryllium, iron, manganese,	Operation		
		mercury, arsenic, selenium)		Sludge	Daily
		Quantity and dry solids content			

Rafik El Khoury & Partners

xviii

Environmental Impact Assessment Sour Wastewater Project

Impact	Monitoring means	Parameters	Phase	Location	Frequency
Wastewater and plant	Sampling Visual	pH, temperature, BOD ₅ , COD, total phosphorous, total nitrogen, TSS, Total and Fecal Coliform	Operation	Influent Primary treated wastewater Final effluent	Daily Quarterly for QA/QC
performance	inspection	Operation of pumping stations, electrical plants, generators, biological reactors, and incinerator	teres and as tota and as tota and sta oheneva a		Continuous
Health and safety	Health and safety surveys	Proper use of PPE, presence of signs, first aid kit, and fire fighting devices	Construction Operation	Sour WWTP site	Continuous
Landscape and visual intrusions	Visual inspection and photographic documentation	Ensure the effective implementation of mitigation measures	Construction Operation	Entire area	Monthly Quarterly
Socio- economics	Field questionnaires Interviews	Population perception Employment records	Construction Operation	Region of Influence	Annual

depths: 1m below surface, mid- depth and 1m above seabed

Rafik El Khoury & Partners

xix

Institutional strengthening

In the context of Sour Wastewater Project, institutional strengthening in environmental management falls within several sectors ranging from wastewater treatment, air quality, traffic to solid waste management, water conservation, and protection of marine resources.

Appropriate environmental management dictates that construction and operation be implemented in accordance to the current state of the art and knowledge regarding environmental protection. For this purpose, contractors and consultants who will be involved in the construction and operation of the various components of the proposed project will be required to attend an environmental training course prior to the initiation of project activities. Environmental training sessions will be conducted twice per year for a period of three days during the construction and operation phases. In an effort to strengthen institutional capacity and environmental awareness, training sessions on the proposed project should be opened for individuals from concerned ministries and agencies such as the MoE, CDR, MoEW, MoIMA, MoPH, South Lebanon Water Establishment, concerned NGOs, etc.

The environmental monitoring and management plans should be implemented by an entity independent of contractors and consultants involved in any component or tasks of the project to ensure quality control and quality assurance. Guidelines, specifications, and content for systematic and comprehensive environmental training and awareness programs shall be developed within the final design. Such guidelines will define the contribution of the proposed project to potential institutional strengthening and capacity building in environmental management in the project area in particular and at the country's scale in general.

Public Participation

Public involvement and consultation are important components in any wastewater management project as they aim to increase the general environmental awareness among the public and various concerned stakeholders on the proposed project thus addressing their concerns.

Preliminary meetings were held between representatives of the CDR, the Ministry of the Environment, the Municipalities of Sour City and Aabbasiyeh village and the Consultant (Rafik El-Khoury & Partners). General concepts associated with Sour wastewater Project are being discussed during these meetings. Every effort was exercised to address all concerns in various parts of the EIA Report and will be made part of environmental specifications for Contractors to abide by. In addition, a public consultation meeting was conducted to introduce

the project and the findings of the EIA and to get feedbacks from various stakeholders in the project area.

Mary allowing and and all all a same of

EIA Report