

Financed under a specific grant agreement no 2018/402-850 from EU IPA II Multi-Beneficiary Programme for Albania, Bosnia and Herzegovina, North Macedonia, Kosovo*, Montenegro and Serbia

Western Balkans Investment Framework Infrastructure Project Facility Technical Assistance 8 (IPF 8)

TA2018148R0 IPA

Mediterranean Corridor, Bosnia and Herzegovina - Croatia CVc Road Interconnection, Subsection: Konjic (Ovcari) - Prenj Tunnel - Mostar North

Gap Analysis & ESIA Disclosure Pack

WB20-BiH-TRA-02 Component 1

Volume 1: Environmental and Social Impact Assessment Report

Chapter 9 Climate

December 2025

Western Balkans Investment Framework (WBIF)

Infrastructure Project Facility Technical Assistance 8 (IPF 8)

Infrastructures: Energy, Environment, Social, Transport and Digital Economy

TA2018148 R0 IPA

Volume 1: Environmental and Social Impact Assessment Report

Chapter 9 Climate

December 2025

The Infrastructure Project Facility (IPF) is a technical assistance instrument of the Western Balkans Investment Framework (WBIF) which is a joint initiative of the European Union, International Financial Institutions, bilateral donors and the governments of the Western Balkans which supports socio-economic development and EU accession across the Western Balkans through the provision of finance and technical assistance for strategic infrastructure investments. This technical assistance operation is financed with EU funds.

Disclaimer: The authors take full responsibility for the contents of this report. The opinions expressed do not necessarily reflect the view of the European Union or the European Investment Bank

PROJECT NO. DOCUMENT NO.

WB20-BiH-TRA-02

VERSION	DATE OF ISSUE	DESCRIPTION	PREPARED	CHECKED	APPROVED
1	25/09/2021	ESIA Report	Team of experts	Irem Silajdžić Konstantin Siderovski	Richard Thadani
2	21/11/2022	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
3	03/03/2023	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
4	10/10/2023	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
5	06/01/2025	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
6	01/08/2025	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
7	26/11/2025	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani
8	31/12/2025	ESIA Report – Chapter 9 Climate	Team of experts	Irem Silajdžić	Richard Thadani

CONTENTS

9	Climate	8
9.1	Introduction	8
9.2	Baseline Conditions	8
9.2.1	Climatic Factors	8
9.2.2	Climate Change	18
9.3	Assessment of Impacts	25
9.3.1	Climate Risks	25
9.3.2	GHG Emissions	44
9.4	Mitigation and Enhancement Measures	63

List of tables

Table 9-1: Values of average annual temperatures according to scenario RCP 8.5	19
Table 9-2: Values of average annual precipitation according to scenario RCP 8.5	22
Table 9-3: Criteria for determining sensitivity category	25
Table 9-4: Criteria for determining exposure category	25
Table 9-5: Vulnerability evaluation matrix	26
Table 9-6: Criteria for determining likelihood scale	26
Table 9-7: Criteria for determining impact scale	26
Table 9-8: Risk assessment matrix	27
Table 9-9: Characteristics of the identified hazards as a consequence of climate change assessment associated with the risk of floods in Konjic	29
Table 9-10: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of landslides and rock falls in the City of Konjic	33
Table 9-11: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of droughts in the City of Konjic	37
Table 9-12: The state of fire risk in the City of Konjic	40
Table 9-13: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of fires in the City of Konjic	40
Table 9-14: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of heavy snowfalls in the City of Konjic	42
Table 9-15: Climate hazards vulnerability assessment	44
Table 9-16: Climate hazards risk assessment	44
Table 9-17: Materials used for the motorway construction	46
Table 9-18: Average characteristics of materials used for motorway construction	47
Table 9-19: Input data for calculating CO ₂ emissions as a result of using construction equipment	48
Table 9-20: Input data for calculation of CO ₂ emissions from vehicles as a result of lubricant oil combustion	51

Table 9-21: CO ₂ emissions as a result of lubricant oil combustion	53
Table 9-22: Input data for calculation of CO ₂ emissions from vehicles as a result of fuel combustion	53
Table 9-23: CO ₂ emissions as a result of fuel combustion	55
Table 9-24: Input data for the calculation of CO ₂ emissions from lighting in 2032	56
Table 9-25: Input data for the calculation of CO ₂ emissions from lighting in 2060	56
Table 9-26: Expected CO ₂ emissions for baseline conditions, construction period and project scenarios (tCO _{2e} /year)	57
Table 9-27: Expected CO ₂ emissions reduction in the operational phase as a result of motorway construction	58
Table 9-28: Expected CO ₂ emissions reduction in the operational phase as a result of motorway construction considering reduced traffic speeds on motorway and congested traffic flow on M17 main road section	58
Table 9-29: Summary of potential impacts on climate and assessment of their significance before mitigation	59

List of figures

Figure 9-1: Climate zones on the territory of Konjic in relation to the motorway route	9
Figure 9-2: Average monthly temperature in Konjic from 1961 to 1990	9
Figure 9-3: Average daily maximum (solid red line), average daily minimum (solid blue line), precipitation amount (columns), number of tropical days (dashed orange line) and average night temperature (dashed blue line) in Konjic	10
Figure 9-4: Number of days in month with the values of corresponding temperatures	11
Figure 9-5: Number of sunny, cloudy, and partly cloudy days, and number of days with precipitation in Konjic	11
Figure 9-6: The amount of precipitation per day in the month and the number of days with snowfall	12
Figure 9-7: Wind rose for Konjic	13
Figure 9-8: Climate zones on the territory of Mostar in relation to the motorway route	15
Figure 9-9: Average monthly temperatures in 2021 in Mostar	16
Figure 9-10: Average monthly maximum and average monthly minimum temperatures in 2021 in Mostar	16
Figure 9-11: Average monthly cloud cover in 2021 in Mostar	17
Figure 9-12: Monthly precipitation in Mostar in 2021	17
Figure 9-13: The average number of days with rain and snow in 2021 in Mostar	17
Figure 9-14: Wind rose for Mostar in 2021	18
Figure 9-15: Average annual temperature for the baseline period (1961-1990) and for the periods: 2011-2040, 2041-2070, 2071-2100 according to the scenario RCP 8.5	19
Figure 9-16: Average annual minimum temperature	20
Figure 9-17: Average annual maximum temperature	21
Figure 9-18: Average annual precipitation for the baseline period (1961-1990) and for the periods: 2011-2040, 2041-2070 and 2071-2100 according to the scenario RCP 8.5	22
Figure 9-19: Annual precipitation for the periods 1961-1990 and 2046-2065 according to the scenario A2	23

Figure 9-20: Number of wet days per year according to scenario A2	23
Figure 9-21: The share of CO ₂ emissions by sector in 2013 in BiH	24
Figure 9-22: The share of CO ₂ emissions within energy sector in 2013 in BiH	24
Figure 9-23: Fluvial (left) and pluvial (right) flood hazard assessment for the project area	28
Figure 9-24: Landslide susceptibility of the project area	32
Figure 9-25: Distribution of landslide prone zones in BiH	33
Figure 9-26: Extreme heat hazard classification for the project area	37
Figure 9-27: Wildfire hazard for the project area	39
Figure 9-28: Projected change in extreme wind for the period 2036-2065	43

9 Climate

9.1 Introduction

This chapter reports findings of the assessment of the potential climate and climate change impacts during both the construction and operational phases.

The assessment of the Project has been undertaken primary through desktop research using available information relating to climate, climate change and climate risks. The methodology included calculation of GHG emissions for baseline and project scenarios, as well as climate vulnerability assessment.

This chapter should be read in conjunction with the following chapters:

Chapter 1	Introduction
Chapter 2	About the Project
Chapter 3	Detailed Project description
Chapter 4	Policy, legislative and institutional context
Chapter 5	Assessment methodology
Chapter 7	Geology and Groundwater
Chapter 8	Surface Waters
Chapter 13	Soil
Chapter 17	Cumulative impacts
Chapter 18	Residual impacts
Chapter 19	ESMP

9.2 Baseline Conditions

9.2.1 Climatic Factors

9.2.1.1 The Area of Konjic

The City of Konjic is located in northern Herzegovina, surrounded by the slopes of the mountains Bjelasnica and Prenj, along the upper course of the river Neretva. Precisely because of the canyon of the river Neretva, warm air penetrates the area of Konjic and gives it the characteristics of a modified Mediterranean climate. This climate is characterised by hot and warm days.

The Federal Hydrometeorological Institute has not owned a meteorological station in Konjic since the previous was destroyed in the 1990s. The nearest meteorological station is located in the area of Ivan Sedlo, 17 km north of Konjic. However, given the significant difference in their altitudes (about 700 m), data from this meteorological station cannot be taken as relevant. Therefore, the analysis of climate and climate change for the Konjic area is partially difficult.

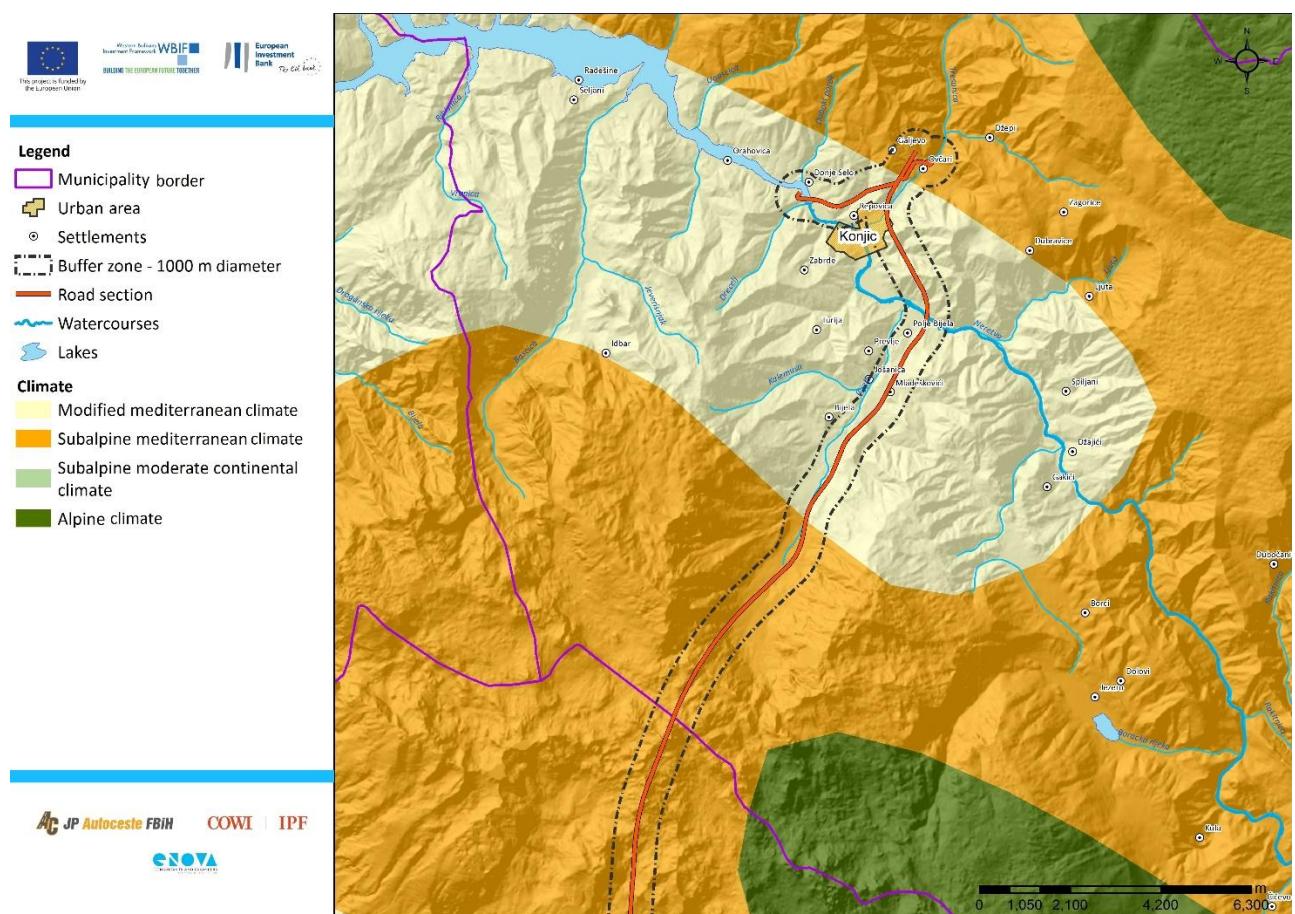


Figure 9-1: Climate zones on the territory of Konjic in relation to the motorway route

According to the available data of the Federal Hydrometeorological Institute for the period 1961-1990, the average air temperature in Konjic was 10.8 °C. The warmest month was August with an average temperature of 20.1 °C, and the coldest January with a temperature slightly above 0 °C¹.

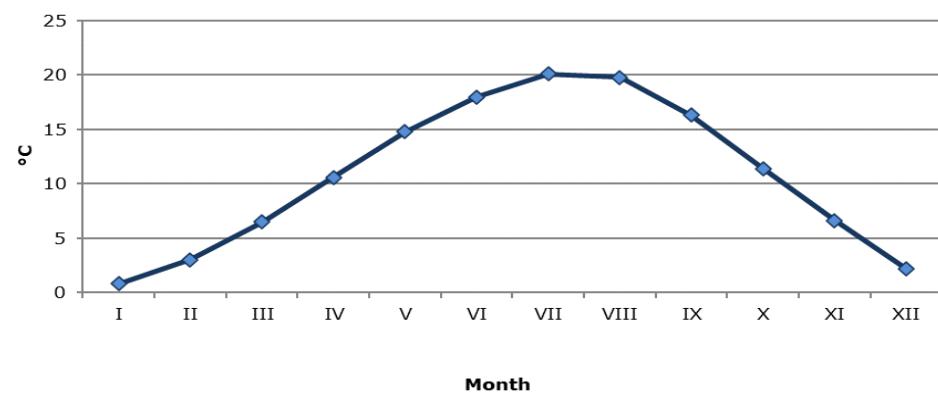


Figure 9-2: Average monthly temperature in Konjic from 1961 to 1990²

According to the latest available data from the Meteoblue website, which analyses the recorded air temperatures in Konjic over the last 30 years, the highest average

¹ Federal Hydrometeorological Institute, Archive of Annual Meteorological Reports 1961-1990

² Ibid.

daily maximum temperatures were recorded in August and July and were 28 °C, and the lowest average daily maximum temperatures in January and February were 7 °C. The highest average daily minimum temperatures were also recorded in August and July and amount 17 °C, and the lowest average daily minimum temperatures in January and February were 1 °C. These temperatures are followed by the number of tropical days, which is highest in July and August. The coldest nights are in January, when the average temperature is even -10 °C.

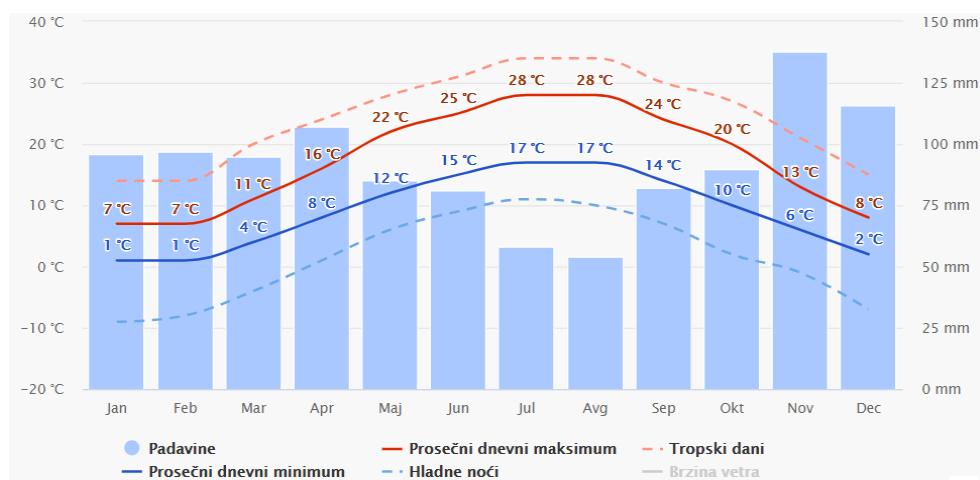


Figure 9-3: Average daily maximum (solid red line), average daily minimum (solid blue line), precipitation amount (columns), number of tropical days (dashed orange line) and average night temperature (dashed blue line) in Konjic³

The average annual rainfall for Konjic is 1449 mm⁴. Average rainfall is higher during the winter months. The highest amounts of precipitations were recorded in November and amounts about 135 mm, while the lowest amounts of precipitations were recorded in August and amounts slightly above 50 mm.

Figure 9-4 shows the proportion of days in month with the values of the corresponding temperatures. The highest number of days with a maximum temperature value (over 30 °C) was recorded in August, while the months characterised by extremely cold days (with a temperature lower than -5 °C) were January, February and December. Also, the black line shows the number of days with frost, which in January and December are approximately 23. The average annual number of days with frost in the period from 1961 to 1990 was 74 days. This meteorological phenomenon is most pronounced in December, January, and February⁵.

³

https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic_%d0%91%d0%be%d1%81%d0%bd%d0%b0-%d0%b8-%d0%a5%d0%b5%d1%80%d1%86%d0%b5%d0%b3%d0%be%d0%b2%d0%b8%d0%bd%d0%b0_3337476

⁴ Lepirica A., Physical Geography Traits Of Endemic Development Centre Prenj-Cvrsnica-Cabulja, 2008

⁵ Federal Hydrometeorological Institute, Archive of Annual Meteorological Reports 1961-1990



Figure 9-4: Number of days in month with the values of corresponding temperatures⁶

Figure 9-5 shows the number of sunny (yellow), cloudy (dark grey) and partly cloudy (light grey) days of the year, with the number of days with precipitation (blue line). August is the month with the largest share of sunny days, while December has the largest number of cloudy days. The highest number of rainy days was recorded in May. Generally, most rainy days occur during the spring.

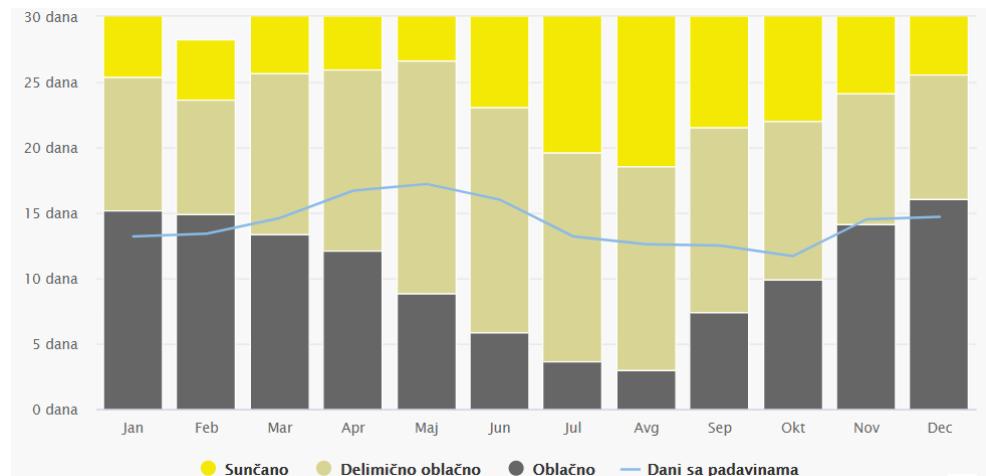


Figure 9-5: Number of sunny, cloudy, and partly cloudy days, and number of days with precipitation in Konjic⁷

Precipitations are not so common for the Konjic area. In each month, the largest share is dry days, followed by days with a rainfall of less than 2 mm. However, the number of days with precipitation of 20-50 mm and 50-100 mm is the highest for

6

[https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic_%d0%91%d0%be%d1%81%d0%bd%d0%b0-%d0%b0-%d0%b8-%d0%a5%d0%b5%d1%80%d1%86%d0%b5%d0%b3%d0%be%d0%b2%d0%b8%d0%bd%d0%b0_3337476](https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic_%d0%91%d0%be%d1%81%d0%bd%d0%b0-%d0%b8-%d0%a5%d0%b5%d1%80%d1%86%d0%b5%d0%b3%d0%be%d0%b2%d0%b8%d0%bd%d0%b0_3337476)

7

https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic_%d0%91%d0%be%d1%81%d0%bd%d0%b0-%d0%b0-%d0%b8-%d0%a5%d0%b5%d1%80%d1%86%d0%b5%d0%b3%d0%be%d0%b2%d0%b8%d0%bd%d0%b0_3337476

November and February. Figure 9-6 also shows the number of days with snowfalls (black line), which is highest in February and is almost 8 days.

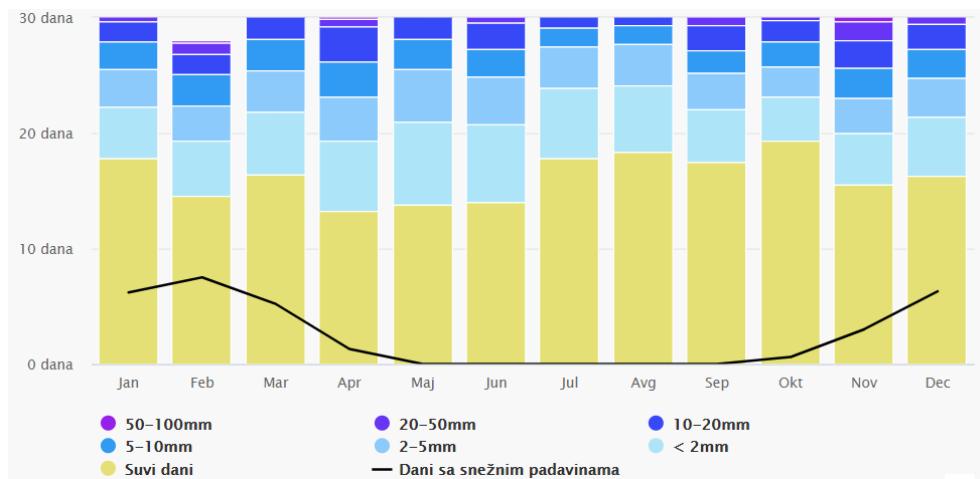


Figure 9-6: The amount of precipitation per day in the month and the number of days with snowfall⁸

When it comes to wind speed, most days of the year have wind speeds of up to 20 km/h. The highest speed (over 61 km/h) were recorded during March. The wind rose is shown in the following figure, which shows how many hours a year the wind blows from certain direction. The wind blows from the direction of the NNE for the largest number of hours during the year, while those who blow from the south are among the strongest.

8

https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic_%d0%91%d0%be%d1%81%d0%bd%d0%b0-%d0%b8-%d0%a5%d0%b5%d1%80%d1%86%d0%b5%d0%b3%d0%be%d0%b2%d0%b8%d0%bd%d0%b0_3337476

Figure 9-7: Wind rose for Konjic⁹

9.2.1.2 The Area of the Prenj Mountain

The project area includes area of the Prenj mountain, which are especially connected to the planned tunnel on this section. The climatic characteristics of Prenj are influenced by the proximity of the sea, the relief, and the altitude. The southern sides of the mountain are affected by the modified Mediterranean climate, which penetrates along the Neretva River valley.

Prenj is characterised by a subalpine Mediterranean climate (Figure 9-1) before the motorway enters the Prenj Tunnel at around 717 m asl. Mountain peaks prevent the penetration of cold masses from the north, but also Mediterranean currents into the interior. Such a collision of different air masses causes frequent and sudden changes in weather. The climate is very changeable and capricious, so snow can also fall in the summer¹⁰.

There is no meteorological station in the area of the Prenj Mountain where air temperatures would be measured. Therefore, there are no exact temperature values, but they are estimated on the basis of comparison with neighbouring similar

⁹ <https://www.meteoblue.com/sr/vreme/historyclimate/climatemodelled/konjic>

¹⁰ <https://www.dinarskogorje.com/b42-prenj-masiv.html>

areas where measurements are made (Bjelasnica, Ivan Sedlo). Also, more detailed analyses based on estimated temperatures do not exist.

The estimated average annual temperature in this area is about 14 °C. Monthly air temperatures in January and February range from -1.5 °C to 8 °C. The average temperature decreases with the increasing altitude, so the possibility of frost on the road increases proportionally¹¹. For six “cold” months of the year, the average monthly air temperature is below 0 °C. During the coldest months on Prenj, the temperature drops to -30 °C. The warmest months on Prenj are July and August, but the average monthly air temperature in the highlands is between 10 °C and 18 °C.

The intensity and amount of precipitation in Prenj is above the BiH average level – up to 2,000 mm per year in central part. The annual distribution of precipitation is uneven, so that from March to September the average is from 600 to 800 mm, and in July and August only 40 to 70 mm. Therefore, climatic influences result in heavy precipitation, which from October (sometimes from September) turns into snowfall, which is up to 3 meters high. Winter winds often blow snow off cliffs and ridges, filling depressions and sinkholes with deep snowdrift. The snow on Prenj usually melt by the end of May, and snow patches on the northern slopes can remain until the end of summer¹².

The most pronounced winds are those blowing from the north. The bora and northerly wind blow all year round, but in winter they are more frequent when they reach speeds of up to 200 km/h. On the southern slopes of Prenj, the south wind is significantly pronounced. When the south wind blows, the humidity is very high, and the temperature rises with heavy rainfall¹³.

9.2.1.3 The Area of Mostar

Mostar is located in the valley of the river Neretva, which brings the Mediterranean climate from the south. The modified Mediterranean climate is mostly present on the territory of the city of Mostar, while the Mediterranean, pre-alpine, pre-alpine moderate continental, and alpine climates are in the vicinity (Figure 9-8). The motorway section is located at the territory with dominant modified Mediterranean climate, strongly under the influence of climatic conditions from the Adriatic Sea.

¹¹ http://www.zeleni-neretva.ba/pdf/Brosura_Prenj.pdf

¹² Ibid.

¹³ Ibid.

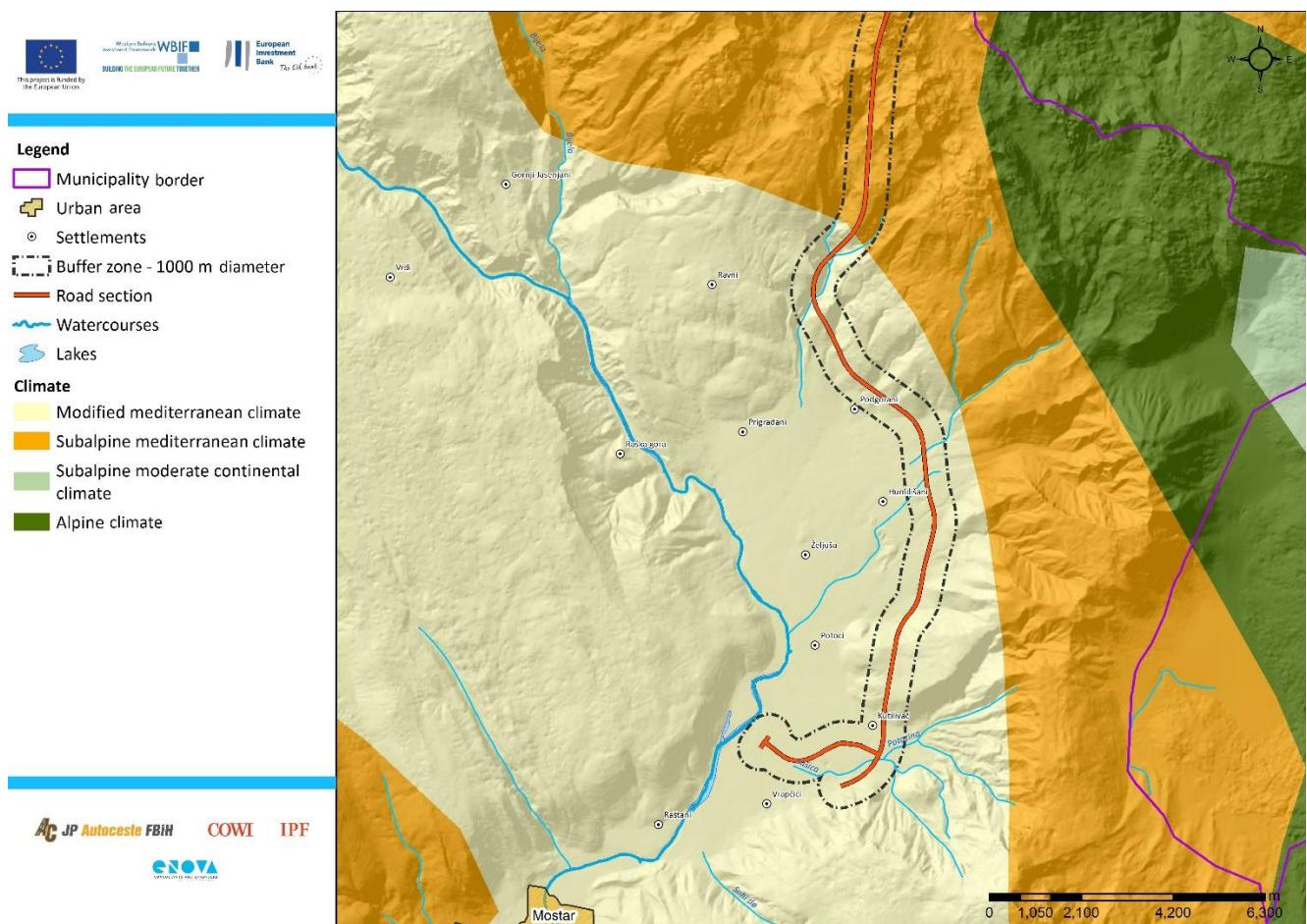


Figure 9-8: Climate zones on the territory of Mostar in relation to the motorway route

Federal Hydrometeorological Institute has a meteorological station in Mostar, located in the settlement of Bijeli Brijeg at about 99 m asl.

In the summer period, the temperatures are very high and can reach 45 °C. High summer temperatures cause droughts and state of natural disasters. Due to the proximity of Adriatic Sea, the winter temperatures are stable with average temperature being around 4 °C¹⁴. The average annual air temperature in Mostar in 2021 was 16.0 °C. The highest daily average air temperature in Mostar was recorded in July 2021 and was 28.5 °C. Also, the maximum air temperature was recorded in the same day and was 41.4 °C. The following Figure 9-9 shows the average monthly temperatures for Mostar. The blue columns show the recorded values in 2021, while the red line shows the mean value for the base period 1961-1990.

¹⁴ CETEOR Sarajevo, Environmental Impact Study for Motorway LOT 5, 6: Section Mostar North- Mostar South-Pocitelj; Mostar South-Buna, Updated Study, 2017

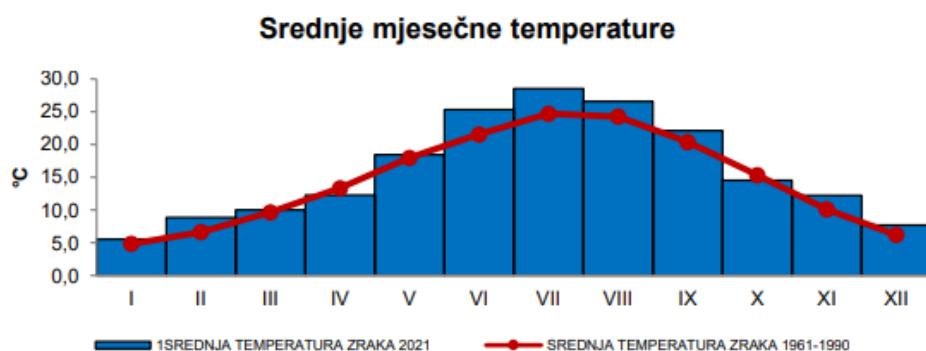


Figure 9-9: Average monthly temperatures in 2021 in Mostar¹⁵

It is concluded that the warmest months were July and August with an average temperature above 25 °C.

Figure 9-10 shows the mean monthly maximum and minimum temperatures. The highest values of mean monthly maximum temperatures were recorded in July and August, while the lowest value was recorded in January. The same goes for average monthly minimum temperatures.

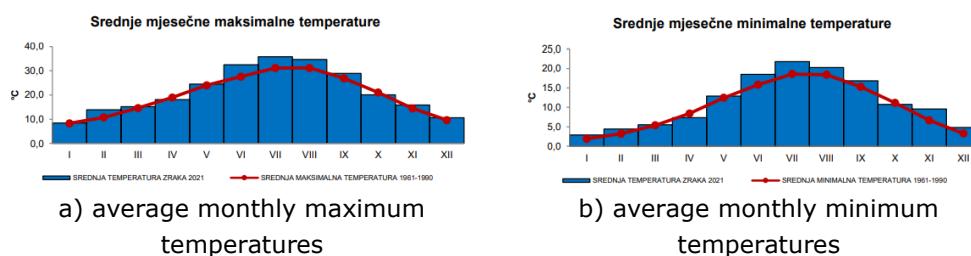


Figure 9-10: Average monthly maximum and average monthly minimum temperatures in 2021 in Mostar¹⁶

It is concluded that values of mean monthly, mean monthly maximum and mean monthly minimum temperatures in almost all months are higher than in the base period, which is especially pronounced in summer and transition periods (spring-summer, summer-autumn).

Also, the number of warm days and the number of hot days in Mostar in 2021 was higher than the average for the period 1961-1990. The average monthly cloud cover in almost all months of 2020 was lower compared to the base period.

¹⁵ Federal Hydrometeorological Institute, Annual Meteorological Report, 2020

¹⁶ Federal Hydrometeorological Institute, Annual Meteorological Report, 2020

Srednja mješevna oblačnost

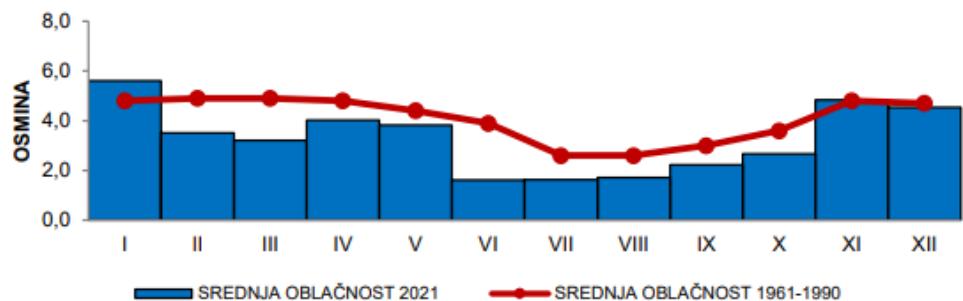


Figure 9-11: Average monthly cloud cover in 2021 in Mostar¹⁷

According to the Annual Report of Federal Hydrometeorological Institute from 2021, the number of sunshine at all meteorological stations, including Mostar (2,404 h), is higher than the thirty-year average (1961-1990).

In November 2021, 356 mm of precipitation was measured at the meteorological station in Mostar, which is the highest monthly value in 2021. In other months (except January, July, October, and December), below-average values were recorded.

Mješevne količine padavina

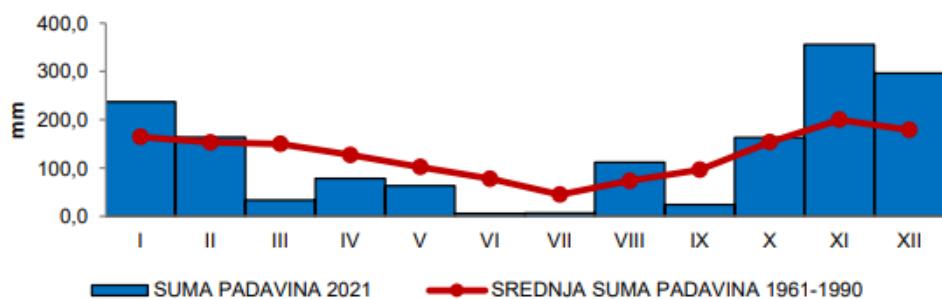


Figure 9-12: Monthly precipitation in Mostar in 2021¹⁸

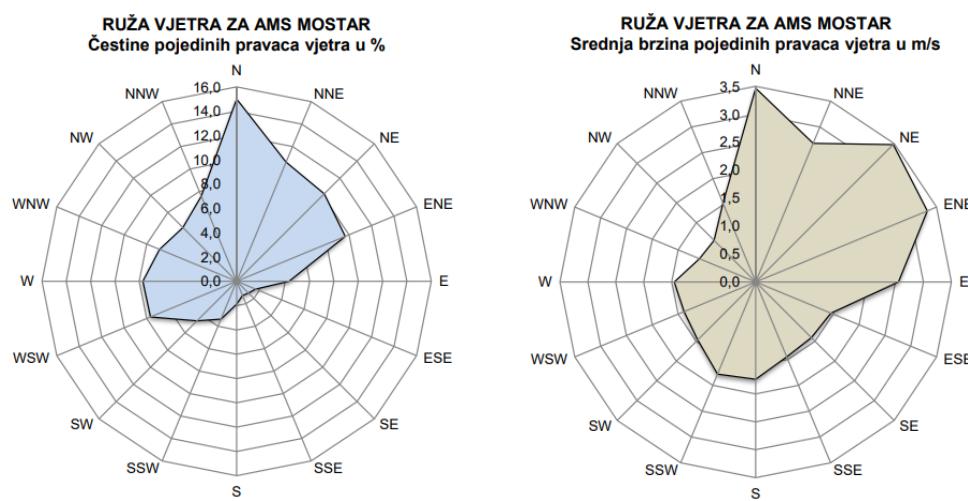
The number of rainy days and days with snow cover by months are shown in Figure 9-13.

a) average number of days with rain

b) average number of days with snow

Figure 9-13: The average number of days with rain and snow in 2021 in Mostar¹⁹

The number of days with snow cover is below the average values in all months, except in April.


¹⁷ Ibid.

¹⁸ Federal Hydrometeorological Institute, Annual Meteorological Report, 2020

¹⁹ Federal Hydrometeorological Institute, Annual Meteorological Report, 2020

The highest daily precipitation recorded at the Mostar meteorological station occurred in October 1940 and amounted to 151.5 mm, while the highest annual precipitation was recorded in 2010 at 2,490.7 mm. The highest snow cover was measured in February 2012 and reached 85 cm²⁰.

The most common winds in the Mostar are the North and North-East winds, also known as the Northern wind ("sjeverac") and Bora ("bura"). Bora is a phenomenon occurring on the east coast of the Adriatic Sea which penetrates the inland through Neretva valley. Bora is a very dry and cold wind blowing in the winter months. In spring and autumn another dominant wind is the Southern wind ("jugo") also penetrating from the Adriatic Sea. Jugo is a very humid wind and brings heavy rains. Figure 9-14 shows the wind rose for Mostar for 2021.

a) wind frequency and direction in %
Figure 9-14: Wind rose for Mostar in 2021²¹

b) wind speed in m/s

9.2.2 Climate Change

The analysis of future climate characteristics of project area is based on the following data sources:

- > Third National Report and Second Biennial Greenhouse Gas Emissions Report of Bosnia and Herzegovina
- > 5th Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5)
- > Climate Atlas of Bosnia and Herzegovina (1961-1990, A1B²² 2001-2030, A1B 2071-2100, A2²³ 2071-2100)
- > www.climatewizard.org (1961-1990, A2 2046-2065)
- > RCP 8.5 (Representative Concentration Pathways) scenario²⁴.

²⁰ <https://www.fhmzbih.gov.ba/slike/klima/MREZA-STANICA/MOSTAR.pdf>

²¹ Federal Hydrometeorological Institute, Annual Meteorological Report, 2020

²² A1B assumes a balanced mix of technology and use of basic resources, with technological improvements that make it possible to avoid using only one energy source.

²³ The A2 scenario assumes a very heterogeneous society. In the background of this society are demand to rely in local resources and preserve the identity of local communities.

²⁴ RCP 8.5 combines assumptions about large populations and relatively slow income growth with moderate rates of technological change and improved energy intensity.

9.2.2.1 Temperature Change Projections

The values of mean annual temperatures were analysed according to the RCP 8.5 scenario, as the scenario in which climate change is most pronounced. Maps for the baseline period and three periods: 2011-2040, 2041-2070 and 2071-2100 are shown in the following Figure 9-15.

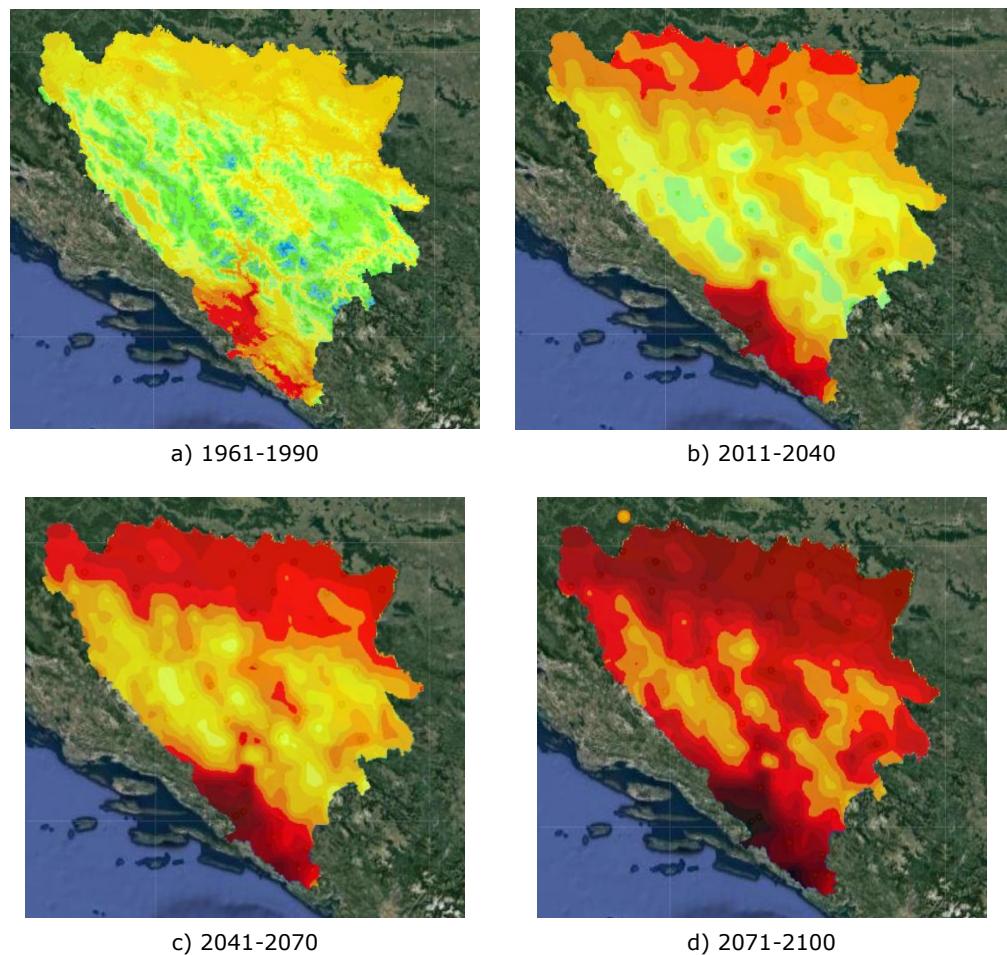


Figure 9-15: Average annual temperature for the baseline period (1961-1990) and for the periods: 2011-2040, 2041-2070, 2071-2100 according to the scenario RCP 8.5²⁵

Table 9-1 gives the values of the estimated mean annual temperatures in the indicated periods.

Table 9-1: Values of average annual temperatures according to scenario RCP 8.5

Period	Scenario RCP 8.5		
	Average annual temperature for project area, °C		
	Konjic	Prenj	Mostar
1961-1990	10.8	6.8	14.6
2011-2040	11.8	8.2	15.7

²⁵ http://www.unfccc.ba/klimatski_atlas/index.html

Scenario RCP 8.5			
Period	Average annual temperature for project area, °C		
	Konjic	Prenj	Mostar
2041-2070	12.9	9.0	16.5
2071-2100	14.5	10.6	18.1

By the end of the 21st century, in the project area, as well as in the entire territory of BiH, a continuous increase in the average annual temperature is predicted. Based on the shown maps and the estimated values of annual temperatures, it can be concluded that the average annual temperature in the project area is expected to increase by about 4 °C.

For a more detailed analysis of the climatological characteristics of the project area, the data obtained through the online tool, the so-called "Climate Wizard"²⁶. Analyses can be done for two scenarios and for the purpose of this document, scenario A2 was selected as more stringent.

The following Figure 9-16 shows the values of the average minimum temperature for the periods: 1961-1990 and 2046-2065.

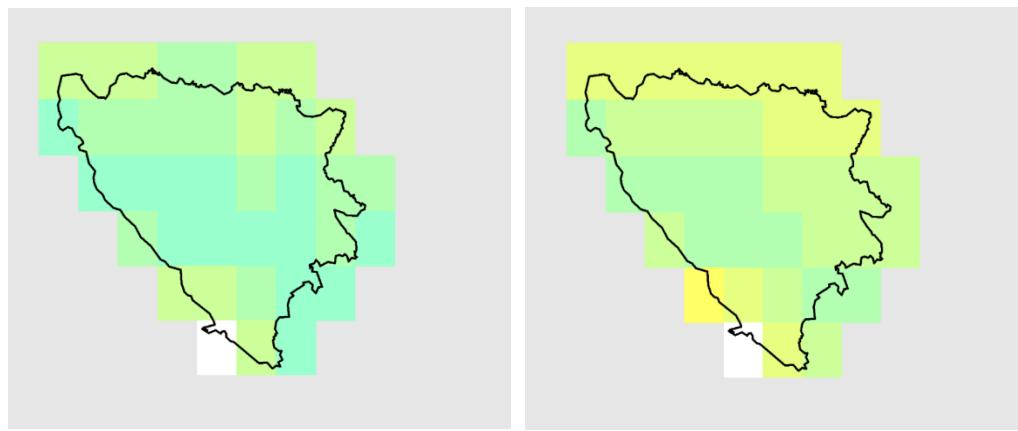
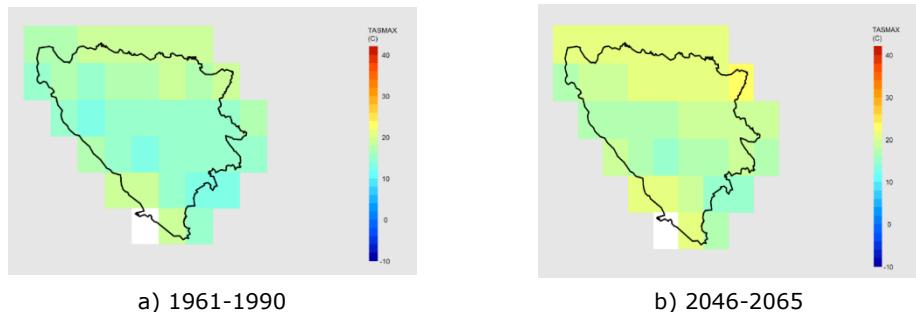


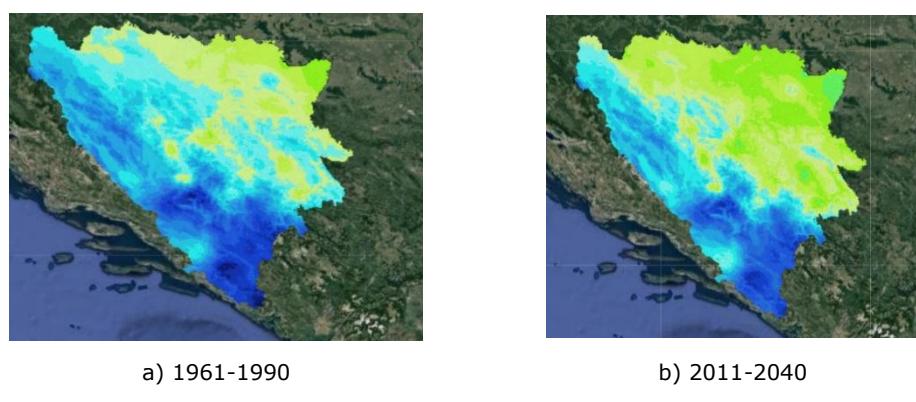
Figure 9-16: Average annual minimum temperature²⁷

Based on the presented values, the expected temperature increase in average annual minimum temperature in the project areas is between 2.5 °C and 3.0 °C. Figure 9-17 shows the average maximum temperature for the periods: 1961-1990 and 2046-2065.

²⁶ <http://climatewizard.ciat.cgiar.org/index1.html>

²⁷ Ibid.




Figure 9-17: Average annual maximum temperature²⁸

The expected increase in the average annual maximum temperature in the project area is between 3.0 °C and 3.5 °C.

9.2.2.2 Changes in Precipitation

According to climate models for Bosnia and Herzegovina, precipitation is predicted to decrease by 10% in the west of the country and increase by 5% in the east. The autumn and winter seasons are expected to have the highest reduction in precipitation²⁹. In recent years, the impact of climate change on the precipitation regime with consequences on water resources has been increased in BiH. The consequences of these changes are reflected in the distribution of precipitation during the year. Changes in precipitation are more enhanced by seasons than on an annual basis. According to the latest data from the meteorological station in Mostar (2021); January, August and December were rated as rainy months, while November was rated as a very rainy month compared to the multi-year average (1991-2020). Otherwise, March was rated as dry, September as very dry, and June and July as extremely dry months³⁰.

Estimated precipitation amounts according to the stricter scenario RCP 8.5 are shown in Figure 9-18.

²⁸ Ibid.

²⁹ Results from running the EH50M model presented in Climate Change Adaptation and Low-Emission Development Strategy for Bosnia and Herzegovina (June 2013). This is detailed on p.16 of the Initial National Communication for Bosnia and Herzegovina under the UNFCCC, 2009.

³⁰ Federal Hydrometeorological Institute, Annual Meteorological Report, 2021

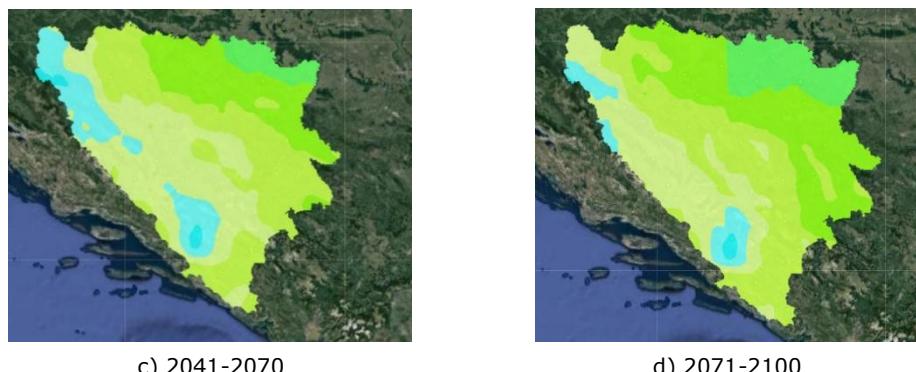


Figure 9-18: Average annual precipitation for the baseline period (1961-1990) and for the periods: 2011-2040, 2041-2070 and 2071-2100 according to the scenario RCP 8.5³¹

Table 9-2 gives the values of the estimated mean annual precipitations in the indicated periods.

Table 9-2: Values of average annual precipitation according to scenario RCP 8.5

Scenario RCP 8.5			
Period	Average annual precipitation for project area, mm		
	Konjic	Prenj	Mostar
1961-1990	1,455	1,850	1,515
2011-2040	1,110	1,150	1,250
2041-2070	1,035	1,080	1,220
2071-2100	1,010	1,045	1,140

As previously pointed out, this scenario is the most severe when it comes to climate change, and the expected decrease in precipitation by the end of the century is largest. According to this scenario, there will be an increase in the number of dry days during the year.

A more detailed presentation of the change in precipitation was made for the two time periods: 1961-1990 and 2046-2065 using online tool "Climate Wizard"³², according to the scenario A2.

³¹ http://www.unfccc.ba/klimatski_atlas/index.html

³²<http://climatewizard.ciat.cgiar.org/index1.html>

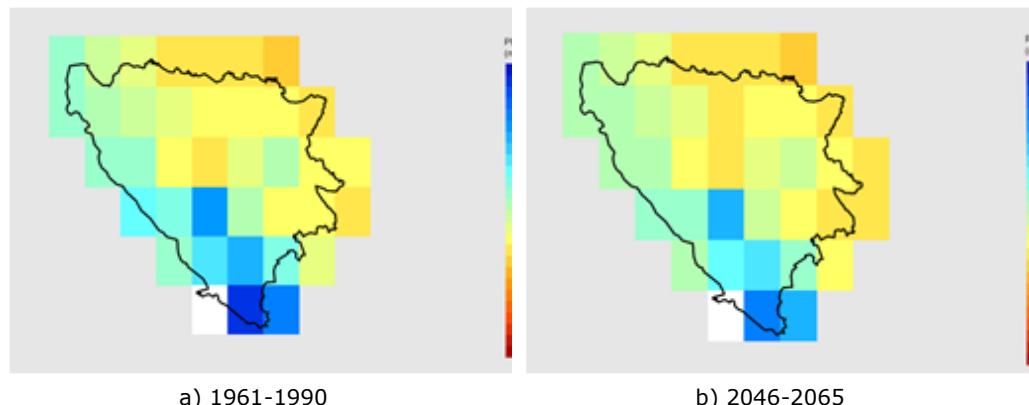


Figure 9-19: Annual precipitation for the periods 1961-1990 and 2046-2065 according to the scenario A2³³

It is clear that the consequences of climate change will be reflected in changes in the value of annual precipitation. The expected reduction of the annual precipitation in the area of Mostar is about 150 mm, in the area of Prenj about 100 mm and in the area of Konjic about 80 mm. The decrease in the number of wet days is shown in Figure 9-20.

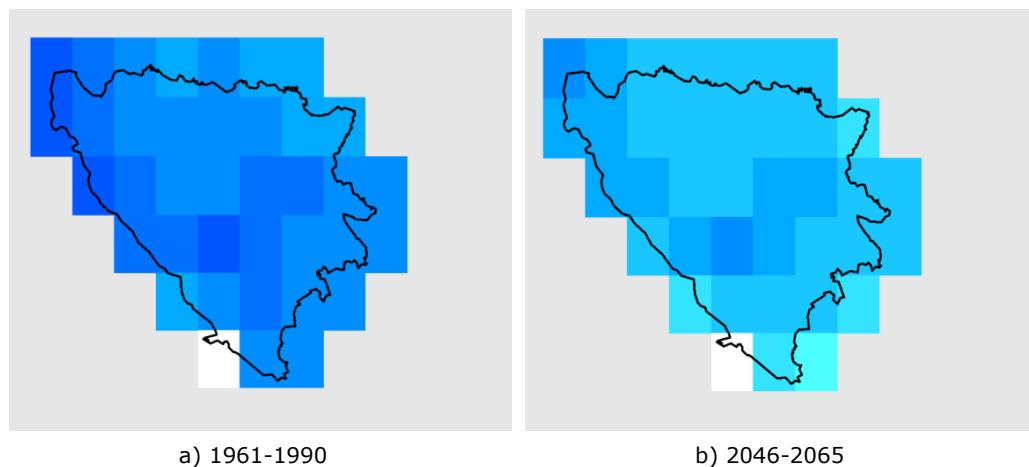


Figure 9-20: Number of wet days per year according to scenario A2³⁴

The number of wet days in the subject area will decrease by an average of 25 per year.

9.2.2.3 Current Annual GHG emissions

The most common anthropogenic sources of CO₂ are the combustion of fossil fuels (for power production, industry, transport, heating, etc.), industrial activities (steel and cement production), land use change and forestry activities. In 2013, electricity and heat production accounted for the largest share in total CO₂ emissions, followed by road transport, agriculture, manufacturing industries and construction.

³³ Ibid.

³⁴ Ibid.

Total CO₂ emissions in BiH come from four main sectors: energy, industrial processes, agriculture and waste, and in 2013 amounted to 24,027.84 tCO₂e. The share of CO₂ emissions by sector in 2013 is shown in the following figure.

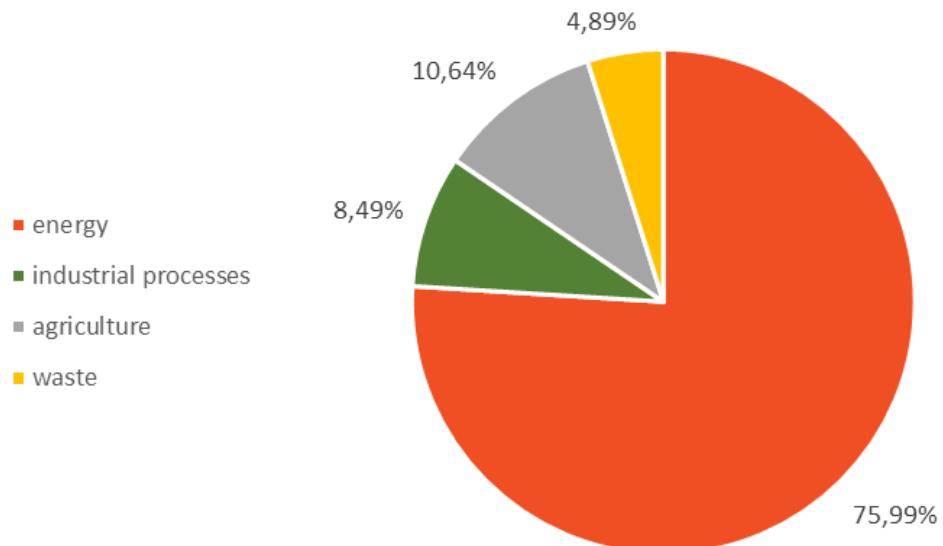


Figure 9-21: The share of CO₂ emissions by sector in 2013 in BiH³⁵

Within the total emissions in the energy sector in 2013, 2,896,330 tCO₂e were from transport.

Next figure shows the total CO₂ emissions within the energy, resulting from the combustion of fuels, which includes transport.

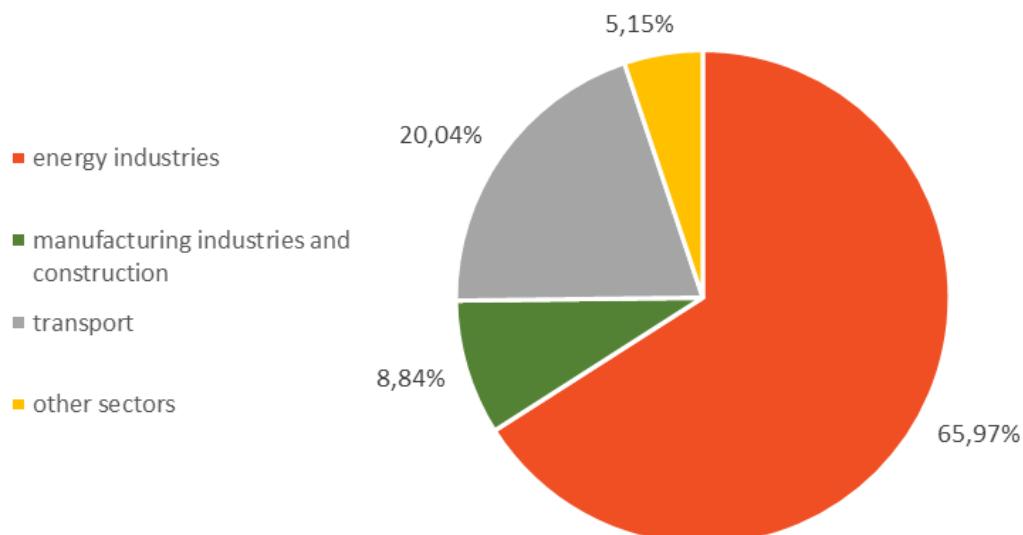


Figure 9-22: The share of CO₂ emissions within energy sector in 2013 in BiH³⁶

³⁵ UNFCCC, Third National Communication and Second Biennial Update Report on Greenhouse Gas Emissions of BiH, 2016

³⁶ UNFCCC, Third National Communication and Second Biennial Update Report on Greenhouse Gas Emissions of BiH, 2016

Based on the latest data from the Worldometers website, CO₂ emissions from the transport sector in 2016 amounted to 3,363,309.72 tons³⁷.

9.3 Assessment of Impacts

9.3.1 Climate Risks

9.3.1.1 Assessment Methodology

To assess the **impact of climate change on the Project**, a two-phase methodology outlined in the *Commission Notice – Technical Guidance on the Climate Proofing of Infrastructure for the period 2021-2027* was followed.

In the **first phase (screening phase)**, a vulnerability analysis was conducted for each climate hazards, following three key steps:

- i. sensitivity analysis,
- ii. an assessment of current and future exposure, and
- iii. vulnerability assessment, which combines the results of the first two steps.

The aim of the **sensitivity analysis** is to identify which climate hazards are relevant to the specific type of Project, irrespective of its location. For each climate hazard, a sensitivity category of 'high', 'medium', or 'low' is assigned, using the following criteria:

Table 9-3: Criteria for determining sensitivity category

Category	Description
High	The climate hazard may have a significant impact on assets and processes, inputs, outputs and transport links.
Medium	The climate hazard may have a slight impact on assets and processes, inputs, outputs and transport links.
Low	The climate hazard has no (or an insignificant) impact.

The **exposure analysis** aims to determine which hazards are relevant to the Project's planned location, regardless of the project type. Each climate hazard is given an exposure category of 'high', 'medium', or 'low', as presented in the following table:

Table 9-4: Criteria for determining exposure category

Category	Description
High	The Project area is highly exposed to climate hazard.
Medium	The Project area may be significantly exposed to climate hazard.
Low	The Project area may be exposed to climate hazard.

³⁷ <https://www.worldometers.info/co2-emissions/bosnia-and-herzegovina-co2-emissions/>

The **vulnerability analysis** combines the results of the sensitivity and exposure analyses, as illustrated in the following table:

Table 9-5: Vulnerability evaluation matrix

		Exposure		
		High	Medium	Low
Sensitivity	High	High	High	Medium
	Medium	High	Medium	Low
	Low	Medium	Low	Low

The vulnerability assessment identifies the most critical hazards for risk evaluation (i.e., those ranked as 'high' or 'medium' vulnerability), for which appropriate avoidance or mitigation measures are required.

In the **second phase (detailed analysis)**, a risk assessment is performed for climate hazards with 'high' and 'medium' vulnerability. The risk analysis is divided into three steps:

- i. likelihood analysis,
- ii. impact analysis, and
- iii. risk assessment, which combines the results of the first two steps.

The **likelihood assessment** evaluates how likely the identified climate hazard is to occur within a specific timeframe, such as the Project's lifetime, using the following scale:

Table 9-6: Criteria for determining likelihood scale

Scale	Description
Rare	Climate hazard is highly unlikely to occur (5% chance of occurring).
Unlikely	Climate hazard is unlikely to occur (20% chance of occurring).
Moderate	Climate hazard is as likely to occur as not (50% chance of occurring).
Likely	Climate hazard is likely to occur (80% chance of occurring).
Almost certain	Climate hazard is very likely to occur (95% chance of occurring).

The **impact analysis** considers the consequences if the identified climate hazard occurs, with the impact rated on a scale of severity per hazard using the following criteria:

Table 9-7: Criteria for determining impact scale

Scale	Description
Insignificant	Minimal impact that can be mitigated through normal activity.
Minor	An event which effects the normal project operation, resulting in localised impacts of a temporary nature.
Moderate	A serious event requiring additional actions to manage, resulting in moderate impacts.

Scale	Description
Major	A critical event requiring extraordinary action, resulting in significant, widespread or long-term impacts.
Catastrophic	Disaster with the potential to lead to shut down or collapse of the asset/network, causing significant harm and widespread long-term impacts.

By assessing both the likelihood and impact of each climate hazard, the significance level of potential risk is estimated using the following matrix:

Table 9-8: Risk assessment matrix

	Impact					
	Insignificant	Minor	Moderate	Major	Catastrophic	
Likelihood	Rare	Low	Low	Medium	High	Extreme
	Unlikely	Low	Low	Medium	High	Extreme
	Moderate	Low	Medium	High	Extreme	Extreme
	Likely	Medium	High	High	Extreme	Extreme
	Almost certain	High	High	Extreme	Extreme	Extreme

Mitigation measures will be proposed only for climate hazards assigned a significant risk ranking of 'medium' to 'extreme'. For those characterised by a low-risk ranking, specific actions are not deemed necessary.

9.3.1.2 Climate Hazards Identification

9.3.1.2.1 Background

The key baseline facts that guide the assessment of climate change impacts on motorway infrastructure are:

- > In the past two decades, Bosnia and Herzegovina has faced with several significant extreme climate and weather episodes that have caused significant material and financial deficits, as well as the loss of human lives. The most significant events are the 2012 drought and the floods of 2014³⁸ and 2024³⁹.
- > A significant shift in the annual distribution of precipitation, coupled with rising temperatures, has increased the frequency and intensity of droughts and floods across BiH. Landslides are frequent consequences of floods and heavy rainfall, while high temperatures and droughts increase the risk of wildfires.
- > Triassic, Jurassic, Cretaceous, Eocene, Miocene and Quaternary deposits participate in the geological structure of the terrain that gravitates to the motorway route and facilities on the Konjic (Ovcari) - Prenj Tunnel - Mostar

³⁸ UNFCCC, Third National Communication and Second Biennial Update Report on Greenhouse Gas Emissions of BiH, 2016

³⁹ <https://www.slobodnaevropa.org/a/poplave-jablanica-kiseljak-kresevo-konjic/33145885.html>

North subsection. The occurrence of landslides and rockfalls is related to the execution of construction works, more precisely because of creation of road cuts or embankments, excavation works on tunnels, topsoil stripping, use of heavy machinery and equipment, soil dewatering.

- According to the Map of flood risk⁴⁰, area around Konjic is characterised as a high risk area. Risk maps indicating the flooding risk for inhabitants and objects are not available for Konjic area. According to the Study on Preliminary Flood Risk Assessment for the Category I watercourses⁴¹ there is no flood damage risk from the Neretva River in the area of influence on both Mostar and Konjic side. Moderately significant flood risk is identified for the Tresanica river in the industrial area of Konjic's Repovica settlement.
- Viaducts and bridges will be constructed at heights of 30 m and above the Neretva and Tresanica river, therefore no flood risk to the motorway structures is expected.

9.3.1.2.2 Floods

In general, both fluvial (river) and pluvial (urban) flood hazards in the project area are classified as low (Figure 9-23), indicating that there is less than a 1% probability of potentially damaging and life-threatening floods occurring in any given year (corresponding to a return period of approx. 1 in 1,000 years)⁴².

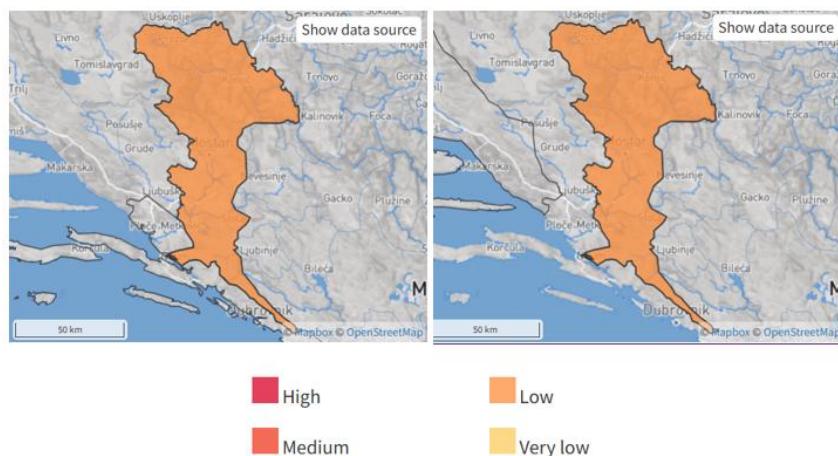


Figure 9-23: Fluvial (left) and pluvial (right) flood hazard assessment for the project area

The Project alignment will cross two rivers:

- First-category watercourse – the Neretva River, which the motorway crosses at two locations: (i) near Donje Selo, where the Konjic Bypass will cross the Neretva to connect with the main road M17, at a high of approx. 75 m, and (ii) after exiting Tunnel T2, where the route crosses the Neretva River via Viaduct 4, at a high of approx. 77 m.

⁴⁰ Available at <https://avpjpm.jadran.ba/zastita-od-voda>

⁴¹ Hydro-Engineering Institute Sarajevo, Study on Preliminary Flood Risk Assessment for for Category I Water Courses in FBiH, April/May 2013

⁴² ThinkHazard! provides a general view of the hazards, for a given location, that should be considered in project design and implementation to promote disaster and climate resilience. The tool highlights the likelihood of different natural hazards affecting project areas. Available at: <https://thinkhazard.org/en/>

- Second-category watercourse – the Tresanica River, which the motorway crosses near the beginning of the route via Viaduct 3, at a height of 30 m. At the entrance to Konjic, the Tresanica River flows into the Neretva River.

The motorway alignment also crosses few intermittent streams, as detailed in Chapter 8 Surface Waters.

The bridges and viaducts on the Prenj Tunnel – Mostar North section range in height from 50 to 60 m, with only occasional streams occurring under them.

The SECAP for Konjic⁴³ includes an assessment of the risks associated with floods, with the results presented in Table 9-9.

Table 9-9: Characteristics of the identified hazards as a consequence of climate change assessment associated with the risk of floods in Konjic

Risk	Risk characteristics					Period	
	Current characteristics		Future characteristics				
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange			
Floods	High	Moderate	No change	No change	Risk in the short, medium, and long term		

Consequently, the probability of floods across the entire Konjic area is considered high, while the potential impact is rated as moderate.

According to the flood risk map⁴⁴ developed by the Agency for the Watershed of the Adriatic Sea, the Konjic area, along the Neretva River valley, is assessed as being at high risk of flooding over the 100-year and 500-year return periods. This includes the areas where the Project alignment will cross the Neretva River, near Donje Selo and after exiting Tunnel T2.

The Tresanica River valley is not considered to be at significant risk of flooding. However, the Tresanica River exhibits pronounced flow fluctuations, occasionally of a torrential character, as evidenced by the large boulders within its bed. Despite this, frequent flooding has not been recorded along the river's course, largely due to its steep longitudinal gradient. The highest water flows occur in the autumn, following heavy rainfall, and in the spring, following snowmelt.

The *Study on Preliminary Flood Risk Assessment for Category I Watercourses*⁴⁵ notes that historical floods were recorded at the confluence of the Tresanica and Neretva

⁴³ Sustainable Energy and Climate Action Plan (SECAP) of Konjic Municipality, 2020

⁴⁴

<https://www.arcgis.com/apps/webappviewer/index.html?id=da0f346e45c94bc0951f37ce0bf33fd2>

⁴⁵ Hydro-Engineering Institute Sarajevo, Study on Preliminary Flood Risk Assessment for Category I Water Courses in FBiH, April/May 2013

Rivers, in the settlement of Repovica (approx. 1.2 km from the end of the motorway subsection in Ovcari). These floods were assessed as moderately significant.

Additionally, overflow events were recorded in the settlements of Polje Bijela (where the Project alignment crosses the Neretva River after exiting Tunnel T2), Dzajici and Spiljani settlements (approx. 1.2 km from the motorway alignment), and within the Konjic urban area. However, these flood events were assessed as not significant.

As a result, flooding of the Neretva and Tresanica Rivers may occur during periods of heavy rainfall, leading to torrential flow conditions. However, according to the Preliminary Design, the structures are engineered in such a way that potential flooding of these rivers is not expected to negatively impact the motorway. Special consideration has been given to the height of the bridges and viaducts, which range from 30 to 80 m, as previously mentioned above.

However, during heavy rains, **pluvial flooding** may occur, potentially causing damage to road assets (such as pavements and drainage systems), deterioration of road structural integrity due to increased soil moisture, reduced safety including accidents and vehicle damage, hazardous road conditions (such as slippery surfaces) and reduced visibility, as well as traffic disruptions and congestion.

During the development of the Preliminary Design, hydraulic parameters for short-duration rainfall were utilised, specifically intensity-duration-frequency (IDF) curves, as input data for the hydraulic calculations of stormwater drainage from motorway surfaces.

The Preliminary Design has foreseen construction of culverts in embankments to allow for water to flow undisturbed. The dimensioning of the culverts is done in a way to allow for water to pass undisturbed but also to ensure the stability of motorway structures.

The water from the road surface will be received in a controlled manner, with a concrete gutter 0.75 along the green lane and 0.50 m along the emergency lane, conducted to the water drain and further into the collector, which is located in the median strip or shoulder. Water from the collector will be transported in pipes to the oil and grease separators and discharged into the recipient.

Surface water drainage will be ensured through cast-iron drains equipped with sand traps. The spacing of the drains, whether along the overtaking or emergency lane, will be determined according to standard calculation methods.

During the development of the Main Design, culverts for torrents and intermittent flows will be incorporated to prevent the formation of barriers that could impede the natural outflow of water toward the recipient.

The design of drainage and treatment structures is included in the Preliminary Design for all three sections, with details provided in Chapter 3.2.8 Wastewater Treatment System. On the Ovcari – Tunnel Prenj section, a closed surface runoff collection and treatment system is planned. This system will capture all surface water from motorway surfaces and treat it using oil and grease separators. The final

locations of all oil and grease separators will be defined during the Main Design phase. At the Prenj Tunnel section, all water from asphalted surfaces, whether generated during tunnel washing or firefighting operations, will be diverted to a closed reservoir with a capacity of 100 m³. One reservoir is planned for each tunnel portal. The collected water will be pumped out and treated by authorised entities. In addition, all water collected on the tunnel plateau will be directed to the drainage system along the open route and treated through oil and grease separators. For the Prenj Tunnel – Mostar North section, all intercepted surface water will be contained, treated, and discharged. The design concept foresees the use of oil and grease separators without bypasses, ensuring 100% treatment efficiency.

It should also be noted that the Preliminary Design was prepared in accordance with the *Guidelines for Road Construction* developed by the Public Company "Ceste Federacije BiH" (2005)⁴⁶ and the accompanying *Instructions for the Design, Procurement, Installation and Maintenance of Motorway Elements* developed by JPAC (2015)⁴⁷. These documents define technical requirements for road structures, deposits, retaining walls, engineering-geological and geotechnical investigations, environmental considerations, as well as external and internal drainage systems. The *Instructions* specify the parameters for designing sustainable drainage solutions capable of safely conveying stormwater and reducing flood risk, in line with European standard BAS EN 752:2010 and other relevant BAS EN standards for drainage design and construction⁴⁸. The *Guidelines* also address climatic and hydrological conditions relevant for road construction in accordance with the reference documentation⁴⁹; and set out requirements for stormwater treatment and water protection systems, in accordance with BAS EN 858-1:2005, BAS EN 1610:2002, BAS EN 976-1 and BAS EN 976-2. Furthermore, the *Instructions* provide detailed guidelines for the design of culverts, tunnel drainage, oily-water treatment systems, and drainage systems for bridges and viaducts. Overall, the drainage concept must ensure stability of the motorway structure, prevent erosion, and incorporate best water management practices, including minimising surface runoff, enhancing ground infiltration, and regulating water flow. The same *Guidelines* and *Instructions* will be followed during the Main Design development.

Furthermore, the design of internal and external drainage systems, including culverts, flood channels, and stream beds, was based on recommendations from the previously mentioned *Guidelines* and *Instructions*, and considered hundred-year

⁴⁶ <https://jpdcfbh.ba/bs/poslovanje/legislativa/smjernice>

⁴⁷ <https://www.jpautoceste.ba/images/suz.pdf>

⁴⁸ BAS EN 1433:2005, BAS EN 1433/A1:2010, BAS EN 476:2012, BAS EN 13598-2:2010, BAS EN 15383+A1:2014, DIN 4052-10a, DIN 4052-10b i DIN 4052-11, BAS EN 124: 2002/DIN 1229, BAS EN 1852-1:2010, BAS EN 1401-1:2010, BAS EN 14364:2014, BAS EN 12666-1+A1:2012, BAS EN 13476-1:2009, BAS EN 14457:2008; BAS EN ISO 9969:2010; DIN 4262-1, BAS EN 1917:2007, BAS EN 1917/Cor2:2010; BAS EN 14396:2008; BAS EN 1610:2002; BAS EN 13508-1:2014; BAS EN 13508-2+A1:2012

⁴⁹ SN 640 317a: 1988 Dimensionierung, Unterbau und Untergrund (Design, Substructure and Subgrade); SN 670 140a: 1988 Frost (Frost); SN 670 005: 1970 Klassifikation der Lockergesteine, Feldmethode nach USCS; (Classification of Soils, In-situ Method by USCS); SN 670 008: 1970 Klassifikation der Lockergesteine, Laboratoriumsmethode nach USCS (Classification of Soils, Laboratory Method by USCS); Zusätzliche technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Strassenbau - ZTVE 94, DIN 18196, Bodenklassifikation für bautechnische Zwecke; Additional Technical Contractual Conditions and Guidelines for Earth Works in Road Construction – ZTVE 94, DIN 18196, Classification of Soils for Construction Purposes

rainfall data using the most recent information provided by the Agency for the Watershed of the Adriatic Sea and the Federal Hydrometeorological Institute. These data include records of the most recent heavy rainfall events in the project area, which resulted in flooding.

Based on the information presented, it is concluded that the Project area is exposed to both fluvial and pluvial flooding, although the proposed measures integrated into the Project design greatly reduce the potential for adverse impacts. Consequently, the overall **exposure** to flooding is assessed as **low**, while the **sensitivity** of road assets and traffic flows remains **high**.

9.3.1.2.3 Landslides

In general, landslide susceptibility in the project area is classified as high (Figure 9-24), meaning that this area has rainfall patterns, terrain slope, geology, soil, land cover and (potentially) earthquakes that make localised landslides a frequent hazard phenomenon.

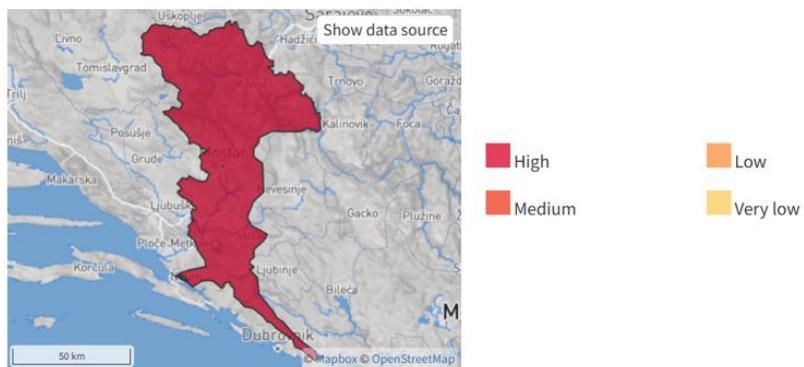


Figure 9-24: Landslide susceptibility of the project area

As a result of floods, the project area, especially the area of the City of Konjic is often affected by landslides, mostly local roads and settlements. The most devastating landslides in Konjic in the past period happened in February 2018 and in December 2020, when local roads and power lines were damaged, deposits of earth and stones broke in residential properties⁵⁰. In January 2023, a landslide affected several homes and a local road following heavy rainfall⁵¹. Additionally, floods followed by landslides in the Konjic area in October 2024 resulted in loss of life and substantial material damage, including damage to local roads⁵². It should be emphasized that no impacts from flood or landslide events have been recorded in the project area in 2024. All the reported incidents occurred in settlements located outside the Project footprint (approx. 11 km from the nearest motorway point in Donje Selo settlement).

⁵⁰ <https://www.bljesak.info/vijesti/flash/Nevrijeme-oko-Konjica-i-Jablanice-aktiviralo-klizista-zatrpane-lokalne-ceste/226132>; <https://www.konjic.ba/ba/vijesti/iz-konjica/519-nacelnik-opcine-konjic-obisao-radove-na-sanaciji-klizista-u-naselju-orahovica.html>

⁵¹ <https://www.rama-prozor.info/clanak/konjic-kisa-pokrenula-klizista/78704>

⁵² https://www.novikonjic.ba/2024/10/15/pojedina-naselja-u-konjicu-i-dalje-odsjecena-prijete-im-i-klizista-40-porodica-ostalo-bez-krova-nad-glavom/#google_vignette

The distribution of zones prone to landslides in BiH is shown in Figure 9-25, where the green colour represents areas that are not exposed to landslides, while the red colour represents areas extremely sensitive to the occurrence of landslides.

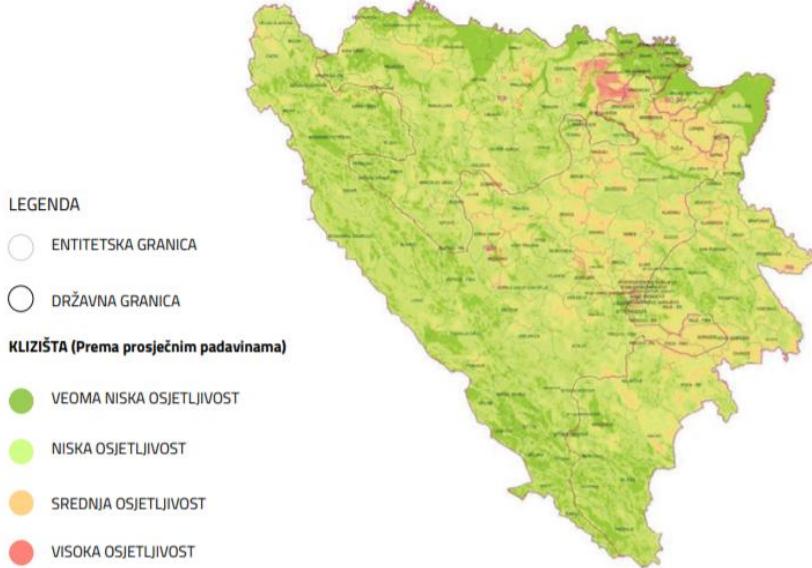


Figure 9-25: Distribution of landslide prone zones in BiH⁵³

It can be concluded that the project area has a generally low sensitivity to landslides, with some parts being moderately sensitive.

Landslides in the City of Konjic occur at several locations, and one of the most active is the one in the area of road communication Konjic-Lisicici, at the location Kralupi, and the central part of the landslide is in Jezerine. Within the SECAP, an assessment of the risk of the landslides, displacement, and subsidence of the soil in the City of Konjic was performed. The results are shown in Table 9-10.

Table 9-10: Characteristics of the identified hazards as a consequence of climate change assessment associated with the risk of landslides and rock falls in the City of Konjic⁵⁴

Risk	Risk characteristics					Period	
	Current characteristics		Future characteristics				
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange			
Soil displacement	Moderate	Moderate	Increase	Increase	Risk in the short, medium, and long term		
Landslides	Moderate	Moderate	Increase	Increase	Risk in the short, medium, and long term		

⁵³ UNDP, Landslide risk management study in Bosnia and Herzegovina

⁵⁴ Sustainable Energy and Climate Action Plan (SECAP) of Konjic Municipality, 2020

Risk	Risk characteristics				
	Current characteristics		Future characteristics		
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange	Period
Soil subsidence	Low	Moderate	Decrease	Without change	Risk in the short, medium, and long term

According to the SECAP, landslides and soil displacements are expected along non-functional roads.

The area of the Prenj mountain does not have a pronounced sensitivity to landslides. However, the destroyed mountain-tourist trails that are a consequence of deforestation create preconditions for future erosion and activation of landslides in the Prenj area⁵⁵.

The area of Mostar is among 12 municipalities in BiH most affected by landslides, with an index of 55 (out of maximum of 100). Bearing in mind that one side of the Mostar valley is built of Neogene sediments, Mostar is classified among municipalities with the possibility of landslides, although only 1.09% of the territory of Mostar has a medium and high risk of landslides. The length of railways, motorways, main roads, and local roads in areas of extremely significant landslide risk is 4.79 km⁵⁶. The settlements where high-risk landslides have been recorded are Semovac and Bjeluse, which are not very close to the project area⁵⁷.

Regarding the measures already included in the Project design, the 2016 Preliminary Design for the section from km 5+240 to Tunnel Prenj passed through several zones prone to landslides and unstable soils in cut areas, representing major geotechnical and hydrological risks. These conditions required extensive stabilisation works and long-term maintenance. Consequently, a revision of the Preliminary Design was made in 2022. As a result, alternative alignment options within the same corridor were proposed to reduce project costs, improve technical feasibility, and minimise environmental impacts. Between the Konjic South Interchange and the Prenj Tunnel, the motorway alignment was displaced by up to 200 m within the same corridor to avoid unstable landslide-prone zones, where the previous design had planned a deep cut section. The previous design required numerous retaining walls and geotechnical anchors to stabilise scree slopes, while the revised alignment eliminated the need for these extensive stabilisation measures, thereby reducing construction complexity and overall costs. Further details are provided in Chapters 2 and 3.

⁵⁵ WWF, Forests of high protection value in Bosnia and Herzegovina, 2017

⁵⁶ EU Floods Recovery Programme, Floods and landslides risk assessment for the housing sector in Bosnia and Herzegovina, 2015

⁵⁷ http://www.mostar.ba/vijesti_citanje/grad-mostar-poduzeo-niz-aktivnosti-na-zastiti-lokaliteta-i-pribavljanju-potrebne-dokumentacije-kako-bi-se-izvrsila-sanacija-kliz.html; <https://www.slobodnaevropa.org/a/mostar-kliziste-odnosi-i-historiju/26832023.html>

Potentially unstable terrain prone to landslides is identified in Section 12, within the Polje Bijela settlement, with the lower part of the terrain estimated to a depth of approx. 5 m. The geotechnical component of the Main Design (Mission G21), as required by the *Rulebook on geotechnical research and testing and the organization and content of geotechnical engineering missions*⁵⁸, is currently being prepared to assess the soil's quality and mechanical variability. Based on the results of Mission G21, additional investigations (landslide monitoring) may be proposed prior to the commencement of works. This monitoring includes the installation of inclinometers, which allow for determining whether the terrain is stable, the extent of any movements, and, based on this information, enable the implementation of appropriate structural measures and adaptation of the Project design to local terrain conditions.

On the Ovcari – Tunnel Prenj section, four locations have been identified where terrain stabilisation will be required due to planned cuts and slopes, while one location on the Prenj Tunnel – Mostar North section has been identified; however, the limestone terrain is not expected to pose stability issues.

The G21 mission will confirm the feasibility of cutting and slopes along the Ovcari – Prenj Tunnel section. In line with the same *Rulebook*, the Contractor will be required to prepare a geotechnical implementation study (mission G31) and conduct monitoring of geotechnical works (mission G32), ensuring timely adaptation and optimisation of the Main Design to actual field conditions and the Contractor's methodology.

From the southern exit of the Prenj Tunnel, the alignment continues through the tectonically deep canyon of Klenova Draga, characterised by traces of intense glacial erosion. Both rocky sides of the canyon are tectonically degraded and present a high risk of rockfall, especially in the case of stronger seismic activity. Localised landslides have been observed, particularly near the planned entrance to the Gradina Tunnel (T4). Tunnel T4 is positioned between two canyon valleys, Klenova and Badnjena Draga, which in this area serve as local erosion bases for groundwater. Throughout the canyon, debris flows are active during very wet periods.

The construction of the Klenova Draga tunnel solves to the greatest extent the issue of the rock fall risk in the zone of the Klenova Draga gorge. However, the embankment section located between the exit of the Prenj Tunnel and the entrance to the Klenova Draga Tunnel, approx. 300 m in length, lies within sectors 1 and 4, areas identified as medium to high-risk zones for rock mass stability according to the Rockfall Risk Map (Geotechnical Survey Mission G1). To assess and mitigate these risks, a dedicated engineering study on rockfall analysis has been proposed and will be carried out in subsequent design stages. Potentially unstable areas will be re-evaluated during field investigations. Additional information on this aspect is provided in Chapter 13.

Although the updated Preliminary Design reduces overall stability risks, the potential for rockfalls and erosions/landslides remains during the construction phase,

⁵⁸ Official Gazette of FBiH, No. 2/06, 72/07 and 32/08

particularly considering the terrain characteristics and slope conditions. Slope stability may be affected by the creation of road cuts or embankments, especially during viaduct construction, while rockfalls may occur during tunnel excavation works. Without adequate protection measures, landslides and soil erosion could also develop along road cuts, embankments, and viaduct approaches. Furthermore, the intersection of water-bearing fractures or dissolution cavities during tunnelling could negatively affect drilling activities and the overall stability of tunnel structures. These potential impacts are analysed in more details in Chapters 7 and 13.

It should also be noted that the Preliminary Design was prepared in accordance with the *Guidelines* (2005) and *Instructions* (2015), including the corresponding requirements for designing the drainage system, as detailed in Chapter 9.3.1.2.2. The *Guidelines* also provide recommendations for erosion protection, emphasizing: (1) technical measures, such as slope preparation, water management, wind protection, and snow cover control, and (2) biotechnical measures, including vegetation to prevent pluvial and surface water erosion. A detailed geodetic survey and high-quality geotechnical investigations are needed for developing a reliable design. The *Guidelines* also outline procedures for geotechnical investigations in line with Eurocode standards, covering test methodology, execution, reporting, and research type and description. Slope stability is addressed by considering influencing factors such as soil characteristics, temperature variations (freezing and thawing), drought, and heavy precipitation, as well as by recommending structural measures to ensure terrain stability and guidance for embankments on poorly bearing or compressible soils. Furthermore, the *Instructions* require the use of binder stabilizers and polymer-modified binders adapted to current climatic conditions when designing and constructing pavement on the main highway lanes, including driving and stop lanes. The same *Guidelines* and *Instructions* will be followed during the Main Design development.

Although the terrain is generally classified as stable and certain measures to reduce instability have been proposed for the subsequent design stages, heavy rainfall may generate torrential streams that pose several risks. These include soil erosion, particularly in planned cuts and embankments, which may lead to damage to embankments and cuttings, an increased risk of road subsidence, and weakened bridge supports. In addition, construction works and seismic activity may trigger localised rockfalls along steep slopes and exposed sections, particularly near tunnel portals and viaduct approaches. Additionally, such conditions heighten health and safety (H&S) risks for workers, users and road operators, potentially resulting in accidents, vehicle damage, traffic disruptions, and congestion. While the **exposure** to landslides is assessed as **medium**, the **sensitivity** of the area to these risks is classified as **high**.

9.3.1.2.4 Extreme Heat and Droughts

As previously shown in Chapter 9.2.2, the average annual temperatures in the project area are predicted to raise constantly, with an increase in the number of dry days and a decrease in rainfall. As specified in the report *Assessment of the Vulnerability of the Federation of Bosnia and Herzegovina to Natural and Other Disasters* droughts have severely impacted agricultural crops and livestock,

particularly in the Herzegovina-Neretva Canton⁵⁹. One of the most radical droughts in recent history, which hit the area of BiH, occurred in 2012. A year earlier, rainfall had been reduced by 50% resulting in historically low flows in all major rivers in the country⁶⁰. Therefore, the tendency for its appearance in the future, with the increase of the average annual temperature and the decrease of the amount of precipitation, is more and more pronounced.

This trend is further supported by the ThinkHazard tool, developed by the Global Facility for Disaster Reduction and Prevention and the World Bank Group, which classifies the extreme heat hazard for the project area as medium (Figure 9-26). This classification indicates a greater than 25% chance that at least one period of prolonged exposure to extreme heat, resulting in heat stress, will occur within the next five years.

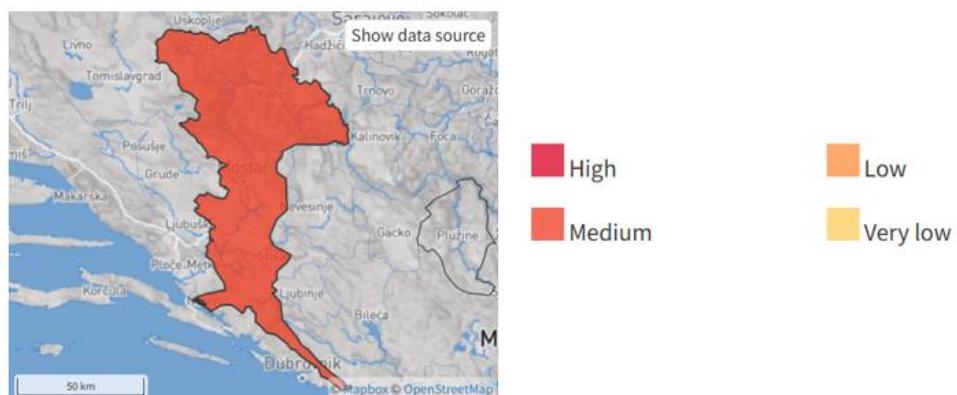


Figure 9-26: Extreme heat hazard classification for the project area

Within the SECAP for Konjic, the degree of threat from current and future occurrences of high temperatures has been assessed (Table 9-11).

Table 9-11: Characteristics of the identified hazards as a consequence of climate change assessment associated with the risk of droughts in the City of Konjic⁶¹

Risk	Risk characteristics				
	Current characteristics		Future characteristics		
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange	Period
Extremely high temperatures	Moderate	High	Increase	Increase	Risk in the long term

⁵⁹ Federal Administration for Civil Protection, Assessment of the Vulnerability of the Federation of Bosnia and Herzegovina to Natural and Other Disasters, 2014

⁶⁰ Amar Causevic, Sasja Beslik, Faruk Hadzic, Robert Griffin, Bosnia and Herzegovina – Impacts and risks of climate change, 2020

⁶¹ Sustainable Energy and Climate Action Plan (SECAP) of Konjic Municipality, 2020

Under SECAP, the transport sector has not been identified as vulnerable to droughts and water shortages.

In the area up to 1,000 m asl on the mountain Prenj, rocky soil contributes to the reduction of moisture. Therefore, the summers are dry, and the vegetation is reduced. The appearance of dry summers is also witnessed by dried-up streams⁶².

The number of sunny days, with extremely high temperatures, which cause droughts, is becoming more frequent in Mostar. Mostar was hit by extremely drought in 2011, and the city was one step closer to declaring a state of natural disaster⁶³.

According to Federal Hydrometeorological Institute, the number of warm and hot days in Mostar in 2021 was higher than the average for the period 1961-1990⁶⁴. Previously extremely dry climate is getting wetter and wetter, which makes the summer heat unbearable and often ripe for declaring a natural disaster.

However, exposure of asphalt to high temperatures leads to an increase in harmful emissions into the air and in summer conditions asphalt can be a greater source of polluting particles than gasoline and diesel from motor vehicles combined⁶⁵. On the other hand, temperature is an important factor that influences the performance of asphalt. In fact, there is a sharp decline of the stability and the structural strength of asphalt concrete with the temperature increasing. Higher temperatures lead to a notable decrease in the stability and structural strength of asphalt concrete. As temperatures rise, both the stiffness modulus and the rutting resistance of asphalt concrete decrease⁶⁶. Additionally, high temperatures can cause thermal expansion of bridge joints. Therefore, the impact of extreme heats and droughts on motorway infrastructure cannot be overlooked.

It should also be noted that the Preliminary Design was prepared in accordance with the *Guidelines* (2005) and *Instructions* (2015), previously mentioned in Chapter 9.3.1.2.2. Specifically, the *Guidelines* define the methods for drainage and sealing based on the characteristics of the terrain and the Project area. They also specify the materials for each layer of the sealing system, including the base, sealing layer, and protective layer; as well as the required properties, such as water permeability, resistance to high temperatures, and resistance to low temperatures.

The *Guidelines* also include detailed requirements for the design and construction of dilations and joints, covering basic performance criteria, types and areas of application, selection of dilations/joints and associated technical documentation,

⁶² <https://hpd-prenj1933.ba/starine-iz-planine/>

⁶³ <https://www.hercegovina.info/mostar-hercegovina/hoce-li-grad-mostar-proglasiti-elementarnu-nepogodu-suse/36829/>

⁶⁴ <https://nap.ba/news/57561>

⁶⁵ <https://revijahak.hr/2020/09/03/visoke-temperature-asfalt-ljeti-moze-zagadivati-zrak-vise-od-benzinskih-i-dizelskih-vozila/>

⁶⁶ Chen, M., Xu, G., Wu, S., & Zheng, S. (2010, June). High-temperature hazards and prevention measurements for asphalt pavement. In 2010 International Conference on Mechanic Automation and Control Engineering (pp. 1341-1344). IEEE.

construction conditions in dilation zones, as well as procedures for acceptance, installation, and replacement, all in accordance with the relevant standards⁶⁷.

The same *Guidelines* and *Instructions* will be followed during the Main Design development.

Based on the information provided, the **exposure** to extreme heat and droughts is assessed as **medium**, with the **sensitivity** of the assets and transport processes is also classified as **medium**.

9.3.1.2.5 Fires

The wildfire hazard for the project area is classified as high, indicating a greater than 50% chance of experiencing weather conditions that could support a significant wildfire, likely resulting in loss of life and property.

Figure 9-27: Wildfire hazard for the project area

In recent years, there is an increasing danger of forest fires, which occur in the summer months as a result of extremely high temperatures and droughts, and whose danger is increased by the fact that these fires often break out in inaccessible, hilly and often mined terrain. In the area of the City of Konjic, the largest number of fires was registered in 2012, due to fires that affected forest areas for a longer period during the year. The total number of interventions PFB (Professional Fire Brigade) Konjic in 2012 was 183. In 2013, the number of interventions was 101, and in 2014 – 96 interventions. The number of interventions increased significantly in 2015 and amounted to 235, while in 2016 it amounted to 186. The state of fire risk in the City of Konjic is shown in Table 9-12.

⁶⁷ Structural bearings and expansion joints for bridges, Structural Engineering Documents IABSE, Zürich, 2002; DIN 1072; Austrian guidelines RVS 15.45: Bridge Equipment – Expansion Joints, 1985 (Brückenausrüstung Übergangskonstruktionen); TL/TP-Fü, Germany. Smjernice za spojice temelje se na: DIN 1055, DIN 4227, DIN 1072, DIN 1045, DIN 4019, DIN 7865, DIN 4060, DIN 1623, DIN 1541, DIN 4033, DIN 4062, DIN 4102, DIN 18540 Austrian Guidelines Wasserundurchlässige Betonbauwerke – Weise Wannen

Table 9-12: The state of fire risk in the City of Konjic⁶⁸

Year	Industries and production facilities	Other business facilities	Residential facilities	Forage	Forests	Open spaces	Vehicles	Other
2012	0	0	14	2	81	40	3	43
2013	0	0	3	2	14	21	5	56
2014	0	0	6	2	15	12	9	52
2015	2	6	4	2	24	67	8	122
2016	0	8	8	0	30	30	4	106
Total	2	14	35	8	164	170	29	379

Also, within SECAP, the danger of fire on the territory of the City of Konjic was assessed (Table 9-13).

Table 9-13: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of fires in the City of Konjic⁶⁹

Risk	Risk characteristics					Period	
	Current characteristics		Future characteristics				
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange			
Fires	High	High	Increase	Increase		Risk in the short, medium and long term	

In 2016, the City of Konjic has adopted the document Fire Risk Assessment and the Fire Protection Plan.

The area of the Prenj mountain is also characterised by fires in the summer months. The biggest fire was recorded in 2012, when the fire approached local roads and houses⁷⁰. Huge areas of the mountain were damaged in the forest fire in 2015⁷¹. In 2020, two significant fires were recorded⁷², followed by one in 2022⁷³.

An increased number of fires in Mostar was recorded in summer, when the dry season and other extreme meteorological conditions coincided (strong wind, high

⁶⁸ Sustainable Energy and Climate Action Plan (SECAP) of Konjic Municipality, 2020

⁶⁹ Ibid.

⁷⁰ <https://balkans.aljazeera.net/news/balkan/2012/8/28/novi-pozar-na-planini-prenj-u-bih>

⁷¹ <https://www.klix.ba/vijesti/bih/aktiviran-pozar-na-planini-prenj-planinari-mole-nadlezne-dasto-prije-pocnu-gasiti-vatru/170819047>

⁷² <https://www.stolac.co/stolac/stolac-vijesti/21198-prenj-dva-po%C5%BEara-uspje%C5%A1no-uga%C5%A1ena>

⁷³ <https://federalna.ba/pozar-jos-aktiviran-na-planini-prenj-u-hnk-u-gorio-automobil-i-obiteljska-kuca-d8qsx>

temperature, dry air and lightning strikes). An additional problem is the mined terrain, so in 2020 the fire east of Mostar lasted a few days and caused great environmental damage⁷⁴. Also, a similar fire effected Rujiste in 2016. In the same year, as many as 8 fires were registered in one day in Mostar⁷⁵.

The Federal Hydrometeorological Institute, on its website⁷⁶ updates the data on the index of danger from the occurrence and spread of forest fires every day.

It should also be noted that the Preliminary Design considered the *Guidelines* (2005) and *Instructions* (2015), as mentioned in Chapter 9.3.1.2.2. Specifically, the *Instructions* provide the technical requirements for designing fire protection systems in accordance with the relevant standards⁷⁷. A fire alarm system is planned in the tunnels to enable early detection of fire. The system is based on a microprocessor-controlled fire alarm control panel. As part of the system, dry powder fire extinguishers will be installed in SOS spaces, as well as at the tunnel's entrance and exit portals. The same *Guidelines* and *Instructions* will be followed during the Main Design development.

However, fires can damage all road infrastructure assets (including pavements, equipment, and structures), reduce visibility, impair H&S risks for road users and operators (including accidents and vehicle damage), and lead to traffic disruptions and congestion.

Based on the information provided, the **exposure** to fire hazards is assessed as **medium**, with the **sensitivity** of the assets and transport processes also classified as **medium**.

9.3.1.2.6 Heavy Snow/Ice Events

Heavy snowfall is generally uncommon in the Project area, except in the Prenj mountain region, where the highest peak reaches 2,155 m asl.

During the winter months, the number of days with snowfall ranges from 0 to 35 days in Konjic, with no snowfall occurring from April to October. The average maximum recorded snow cover height was 70 mm in January. The SECAP for Konjic includes an assessment of the risks associated with heavy snowfall, with the results presented in Table 9-14.

⁷⁴ <https://www.tportal.hr/vijesti/clanak/vise-pozara-u-hercegovini-najteze-kod-mostara-20200411>

⁷⁵ <https://hms.ba/mostar-i-dalje-aktivan-veliki-sumski-pozar-na-rujistu/>

⁷⁶ <https://www.fhmzbih.gov.ba/latinica/AGRO/pozar.php>

⁷⁷ C.J1.030, C.J1.1031, ISO/R 13-55, DIN 28502, DIN 28513, BAS EN 545:2012, DIN 28600, ISO 2531, DIN 3476, DIN 28603, EN 805:2000, DIN 30677-2, DIN EN ISO 1461, IEC 60092-353, IEC 60331-21(90), IEC 60754, IEC 60331-11, IEC 60332, IEC 60754, IEC 61034 DIN 4102-12

Table 9-14: Characteristics of the identified hazards as a consequences of climate change assessment associated with the risk of heavy snowfalls in the City of Konjic

Risk	Risk characteristics				
	Current characteristics		Future characteristics		
	Probability of risk	Impact of risk	Expected change in intensity	Expected frequency exchange	Period
Heavy snowfalls	High	High	Decrease	Decrease	Risk in the short, medium, and long term

The average number of days with snowfall in the Prenj region is 65 per year, based on 30-year simulations⁷⁸. This area is also characterised by a high number of frosty days, with January experiencing the most, approx. 24 days. During the winter months, snow cover often exceeds 2 m in height.

The average number of snowy days in Mostar is seven per year. Snow cover typically occurs from November to March, with the maximum recorded snow depth between 1961 and 2021 reaching 85 cm (in 2012). Generally, snow depth does not exceed 10 cm⁷⁹.

As snowfall increases with altitude, snow can be expected in the Project area, particularly in the section surrounding the Prenj Tunnel.

It should be noted that the Preliminary Design considered the *Guidelines* (2005) and *Instructions* (2015), previously referenced in Chapter 9.3.1.2.2. The *Guidelines* specify that, when assessing the risk of changes in pavement or road surface materials due to freezing and thawing, the most unfavourable local conditions must be considered, including long-term frost, slow penetration of the 0°C isotherm, and rapid thawing. They also categorise materials according to their sensitivity to compaction. Additionally, for the installation of traffic signs and lighting, which will be considered during the Main Design development, calculations must account for local meteorological conditions, such as wind frequency, strength, direction, snow, and the weight and surface area of the signs. For asphalt works, cold or windy weather can reduce the temperature of the mixture, impair layer adhesion, and complicate proper installation. Consequently, minimum air and substrate temperatures are prescribed, wet weather is excluded, and conditions for transporting the asphalt mixture are defined to ensure optimal installation. Therefore, all works will follow the JPAC calendar framework for planning and performing asphalt works on motorways.

Snow, along with heavy rainfall and precipitation accompanied by low temperatures, can lead to ice formation on the motorway subsection. This can result in damage to

⁷⁸ https://www.meteoblue.com/hr/weather/historyclimate/climatemodelled/prenj_bosnia-and-herzegovina_3337480

⁷⁹ <https://www.fhmzbih.gov.ba/latinica/KLIMA/monitoring-snijeq.php>

road assets (such as pavements, structures, and drainage systems), fluctuations in the need for snow clearing and winter maintenance, increased risk of ice/snow melting leading to increased runoff and/or flooding, heightened H&S risks for road users and operators due to snow and ice, as well as traffic disruptions.

Based on the information provided, the **exposure** to snow/ice events is assessed as **medium**, with the **sensitivity** of the assets and transport processes also assessed as **medium**.

9.3.1.2.7 Extreme Winds

The Project area is generally dominated by weak to moderate winds, with occasional occurrences of stronger winds. Wind roses for the Konjic and Mostar areas are previously shown in Figure 9-7 and Figure 9-14. While strong storms and hurricanes are uncommon in the Project area; thunderstorms, often accompanied by heavy rainfall and strong winds, occur primarily from spring to autumn, with a higher frequency during the summer months.

According to the United Nations Environment Programme⁸⁰, the number of days with extreme wind speeds in the Project area ranged from 2 to 6 during the period 1981–2010. The same data source indicates that, under the RCP 8.5 scenario, the number of days with extreme winds could increase by 0 to 2.75 in the period 2036–2100 (Figure 9-28).



Figure 9-28: Projected change in extreme wind for the period 2036–2065

Historical data indicate that stronger winds, with speeds ranging from 50 to 70 km/h, have occurred in the Project area⁸¹. These winds have occasionally caused material damage, most commonly affected vehicles and building roofs.

It should also be noted that the Preliminary Design considered the *Guidelines* (2005) and *Instructions* (2015), previously mentioned in Chapter 9.3.1.2.2. Specifically, as per the Guidelines, the aerodynamic load of wind protection elements must be accounted for to protect against wind and snow drifts in line with EN 1741-1. Additionally, the cumulative reduction of the negative impacts of wind and snow

⁸⁰ <https://test.wb-ccp.com/#/map?author=boku&dataType=obs&variable=ews>

⁸¹ <https://abrasmedia.info/mostar-olujni-vjetar-rusio-stubove-nosio-krov/>;
<https://avaz.ba/vijesti/bih/460747/olujni-vjetar-u-hercegovini-rusi-sve-pred-sobom-slomljena-stabla-veliki-problemi-u-odvijanju-saobracaja>; <https://ntv.ba/nevrijeme-u-mostaru-olujni-vjetar-lomio-drvece/>; <https://avaz.ba/vijesti/bih/671757/jak-vjetar-odnio-krov-s-jedne-zgrade-u-konjicu-padao-i-grad>; <https://net.hr/danas/svijet/zastrasujuca-oluja-pogodila-mostar-stabla-pucala-kao-sibice-ne-pamtim-ovo-u-zivotu-a-taj-zvuk-bc89412b-8ed7-11f0-aa13-9600040c8f8e>

drifts is addressed by applying the relevant requirements of the *Guidelines*, as described in the chapter 9.3.1.2.6 above.

The Project design has considered wind loads based on the latest data from the Federal Hydrometeorological Institute, and all structural elements and Project assets have been designed to withstand strong winds. Therefore, the **exposure** to extreme wind events is assessed as **medium**, while the **sensitivity** of assets and transport processes is assessed as **low**.

9.3.1.3 Vulnerability and Risk Assessment

Based on the methodology outlined in Chapter 9.3.1.1 and the analysis of climate hazards presented in Chapter 9.3.1.2, an assessment of the Project's vulnerability to climate hazards was conducted, along with the identification of the significance of the risks, as detailed in the tables below.

Table 9-15: Climate hazards vulnerability assessment

Climate hazards vulnerability assessment			
Climate hazard	Sensitivity category	Exposure category	Vulnerability category
Floods	High	Low	Medium
Landslides	High	Medium	High
Droughts	Medium	Medium	Medium
Fires	Medium	Medium	Medium
Heavy snow/ice events	Medium	Medium	Medium
Extreme winds	Low	Medium	Low

For climate hazards assessed with high and medium vulnerability, the significance of the potential risks is evaluated below.

Table 9-16: Climate hazards risk assessment

Climate hazards risk assessment			
Climate hazard	Likelihood scale	Impact scale	Risk category
Floods	Unlikely	Major	High
Landslides	Moderate	Major	Extreme
Droughts	Likely	Minor	High
Fires	Moderate	Moderate	High
Heavy snow/ice events	Likely	Moderate	High

Mitigation measures for these climate hazards are proposed below in Chapter 9.4.

9.3.2 GHG Emissions

The possible impacts of motorway construction on the climate are related to emission of greenhouse gases (GHG) from the materials and equipment in the construction phase and road transport and lightening in operational phase (project life-cycle emissions).

Please note that the assessment of project lifecycle emissions did not include emissions from the production of construction materials (i.e. embodied or upfront carbon), as it is not standard practice to account for such emissions in project-level GHG assessments. Instead, the focus was placed on emissions generated during the on-site installation phase. This approach is consistent with widely accepted methodologies and the requirements of international financial institutions, which typically exclude upstream emissions due to: (i) the difficulty of accurately sourcing data on the origin and production processes of materials, (ii) the limited control or influence project developers have over global supply chains, and (iii) the need to maintain consistency and comparability across different project assessments.

It is worth mentioning once more that, although Bosnia and Herzegovina has low emissions of carbon dioxide from transport, road transport is the dominant means of transport and GHG gas emissions from transport are expected to rise. The per capita emissions are just over half of the EU average: 5.18 tons CO₂ equivalent per capita per annum in 2008, compared to an EU average of 9.93 tons. But compared to relative wealth, Bosnia and Herzegovina's emissions are almost four times higher than those of the EU. GHG emissions per unit of GDP were 1.59 kg CO₂ equivalent per EUR in 2008, while the EU average was 0.4 kg per EUR⁸².

In order to determine the level of impact, a GHG assessment is carried out in line with EBRD Protocol for Assessment of Greenhouse Gas Emissions (2017).

The specific information related to climate changes and GHG emissions in the City of Konjic and Mostar are available in the SECAP of Konjic and SEAP of Mostar. In 2014, the corresponding CO₂ emissions in the transport sector in the City of Konjic amount to 17,240 tons⁸³, while the total CO₂ emissions from the transport sector in the area of the City of Mostar amounted to 109,894 tons⁸⁴.

The calculation of CO₂ emissions for the project section for the construction and operation phase of the motorway is presented below. The calculation was made for the base year (2022), construction period (2022-2032) and four future projections – project scenarios (2032 and 2060), for cases if the motorway is (not) constructed.

Calculation of CO₂ emissions for the Project area

GHG emissions for the baseline conditions, construction period and project scenarios were calculated based on relevant scientific research to calculate life-cycle GHG emissions for road construction projects. In order to draw a conclusion of the increase/decrease of emissions in the project area, following scenarios are considered:

- Baseline conditions 2022, which includes the current infrastructure situation (roads, lighting, machinery) that results in vehicle GHG emissions on currently used M17 main road section;

⁸² Climate Change Adaptation and Low-Emission Development Strategy for Bosnia and Herzegovina, June 2013

⁸³ Sustainable Energy and Climate Action Plan (SECAP) of Konjic Municipality, 2020

⁸⁴ Sustainable Energy Action Plan of Mostar, 2016

- > Construction period 2022-2032, which includes emissions from construction materials and equipment, as well as vehicle GHG emissions on currently used M17 main road section;
- > Project scenario 1 – 2032, in case the motorway is not constructed;
- > Project scenario 2 – 2032, in case the motorway is constructed;
- > Project scenario 3 – 2060, in case the motorway is not constructed;
- > Project scenario 4 – 2060, in case the motorway is constructed.

The calculation is divided into the construction and operation phase.

Construction phase

The most significant CO₂ emissions during the construction phase of the motorway come from materials and construction equipment (machines).

CO₂ emissions due to material unloading (dust) are negligible compared to the previously mentioned emissions, so they were not considered in the further calculation.

Calculation of CO₂ emissions from construction materials

In order to calculate CO₂ emissions caused by material used for the construction of the motorway, the corresponding input data were taken from the Technical Report of the Preliminary Design (Table 9-17).

Table 9-17: Materials used for the motorway construction

Layer	Thickness, m	Length, m	Width, m
Motorway lines			
Asphalt SMA 11s, PmB 45/80	0,0168	34,250	15
AGNS 22s, PmB 45/80 + limestone aggregate	0,0245	34,250	15
AGNS 32s, B 35/50 + limestone aggregate	0,0245	34,250	15
Cement stabilisation	0,0400	34,250	15
NNS independent bearing layer	0,0275	34,250	15
Stop lines			
BB 11k, B 50/70 + limestone	0,04	34,250	5
AGNS 22s, B 50/70 + limestone	0,07	34,250	5
NNS independent bearing layer	0,52	34,250	5
Loops			
BB 11s, PmB 45/80 + limestone	0,0168	2,040	3,75
AGNS 32s, B 35/50 + limestone aggregate	0,0350	2,040	3,75

Layer	Thickness, m	Length, m	Width, m
NNS independent bearing layer	0,0385	2,040	3,75
Regional roads			
BB 11k, B 50/70 + limestone aggregate	0,04	1,020	6
AGNS 32s, B 35/50 + limestone aggregate	0,07	1,020	6
NNS independent bearing layer	0,30	1,020	6
Local roads 1			
BB 11k, B 50/70 + limestone aggregate	0,04	555	3,50
NNS independent bearing layer	0,30	555	3,50
Local roads 2			
BB 11k, B 50/70 + limestone aggregate	0,04	2,320.5	5,50
NNS independent bearing layer	0,30	2,320.5	5,50

Based on relevant scientific research, the average values of density and emission coefficient for different materials gave been adopted (Table 9-18).

Table 9-18: Average characteristics of materials used for motorway construction

Material	Density, kg/m ³	Emission factor, kgCO _{2e} /kg ⁸⁵
Bitumen	2,450 ⁸⁶	0,0710
Cement	2,800 ⁸⁷	0,1320
Bearing layer – stone	2,300 ⁸⁷	0,0052

Based on the collected input data, the required volume of material as a product of thickness, length and width was first calculated, and then CO₂ emissions were calculated using the formula:

$$E_{material} = \text{Quantity (m}^3\text{)} \cdot \text{Density } \left(\frac{\text{kg}}{\text{m}^3} \right) \cdot \text{Emission factor } \left(\frac{\text{kg CO}_2\text{e}}{\text{kg material}} \right)$$

The calculation results show that total CO₂ emissions, due to the use of **construction materials** in the construction phase, are **18,353.01 tons**.

Calculation of CO₂ emissions from construction equipment

Input data related to the construction equipment includes the type of equipment, the number of units in operation and operations hours. The input data for the construction phase (type of equipment, number of units) are assumed based on the

⁸⁵ M. H. Alzard, M. A. Maraqa, R. Chowdhury, Q. Khan, F. D. B. Albuquerque, T. I. Mauga & K. N. Aljunadi, Estimation of Greenhouse Gas Emissions Produced by Road Projects in Abu Dhabi, United Arab Emirates, 2019

⁸⁶ D. Emme & C. Orji, Modifying density and voids properties of bituminous concrete using rubber latex, 2009

⁸⁷ https://www.engineeringtoolbox.com/density-solids-d_1265.html

experience data of civil engineers, considering that Main Design has not yet been developed. The assumption is that construction equipment works six hours a day, five days a week. In addition, it is assumed that diesel is type of fuel used to drive this equipment⁸⁸. The average consumption of each type of construction equipment is determined from manufacturer's catalogue or on the basis of available scientific research.

Table 9-19: Input data for calculating CO₂ emissions as a result of using construction equipment

Equipment used in the construction phase		
Type of equipment	Number of units	Consumption, l/h
Loader	30	15 ⁸⁹
Excavator	20	22 ⁸⁹
Bulldozer	15	33,16 ⁸⁹
Grader	20	8 ⁹⁰
Rollers	15	4 ⁹⁰
Steel vibrating roller	20	8 ⁹⁰
Soil compactor	15	25 ⁹¹
Paver	10	10 ⁹²
Dozer	20	25 ⁹¹
Dump truck	30	15,2 ⁹³

The CO₂ emission factor per litre of diesel fuel is 2.49⁹⁴. Based on the input data, using the following formula, CO₂ emissions generated as a result of the use of construction machinery were calculated:

$$\begin{aligned}
 E_{\text{equipment}} = & \text{Number of units} (-) \cdot \text{Consumption} \left(\frac{l}{h} \right) \\
 & \cdot \text{Number of working hours per day} \left(\frac{h}{day} \right) \\
 & \cdot \text{Number of working days per year} \left(\frac{day}{year} \right) \cdot \text{Emission factor} \left(\frac{kg CO_2}{l} \right)
 \end{aligned}$$

⁸⁸ M. H. Alzard, M. A. Maraqa, R. Chowdhury, Q. Khan, F. D. B. Albuquerque, T. I. Mauga & K. N. Aljunadi, Estimation of Greenhouse Gas Emissions Produced by Road Projects in Abu Dhabi, United Arab Emirates, 2019

⁸⁹ Mario Klanfar, Tomislav Korman, Tripimir Kujundzic, Fuel consumption and engine load factors of equipment in quarrying of crushed stone, 2016

⁹⁰ <https://www.scribd.com/document/271103107/Fuel-Consumption>

⁹¹ <https://static1.squarespace.com/static/58877529414fb5283ed14a6b/t/5888f8df46c3c4d4d976a102/1485371615708/Fuel+Table++Compactors.pdf>

⁹² <https://www.scribd.com/document/321246669/Fuel-Consumption-Sheet>

⁹³ https://postconflict.unep.ch/humanitarianaction/documents/02_08-04_06-04_02-22.pdf

⁹⁴ https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf

Also, when it comes to indirect emissions, it is assumed that the same number of dump trucks is used to transport materials to the construction site. Based on the empirical data, an average distance of the material collection site to the unloading site of 50 km (in one direction) was assumed, and that material is transported 270 days per year. CO₂ emissions generated as a result of using dump tracks for material transport is calculated as:

$$E_{transport} = \text{Number of units} (-) \cdot \text{Number of working days per year} \left(\frac{\text{days}}{\text{year}} \right) \cdot \text{Distance of the material collection site to the unloading site (km)} \cdot \text{Emission factor} \left(\frac{\text{kg CO}_2}{\text{km}} \right)$$

Using these two formulas, the total annual CO₂ emissions, generated as a result of the use of **equipment** during motorway construction, are **13,299.57 tons**.

Considering that CO₂ emissions in BiH from the transport sector in 2016 amounted to 3,363,309.72 tons⁹⁵, the use of construction equipment for the construction of this section would contribute to an increase in total annual emissions from the transport sector by 0.4%.

Operational phase

The main sources of CO₂ emissions in the operational phase are vehicles and lightning.

The reduction of CO₂ emissions due to the planting of trees and the restoration of green areas along the motorway section is neglected in this case, because small values are expected considering the generated amounts of CO₂ emissions from vehicles.

Calculation of CO₂ emissions from vehicles

The calculation of CO₂ emissions from vehicles was done for baseline conditions (2022), construction period (2022-2032) and four project scenarios – 2032 (project scenario 1 in case the motorway is not constructed and project scenario 2 in case the motorway is constructed) and 2060 (project scenario 3 in case the motorway is not constructed and project scenario 4 in case the motorway is constructed).

As a result of vehicle operation, emissions of ultimate CO₂ originate from three sources:

- > combustion of lubricant oil,
- > combustion of fuel,
- > addition of carbon-containing additives in the exhaust.

In order to simplify the calculation, as well as considering that addition of carbon-containing additives in the exhaust is negligible, the procedure for calculating CO₂ emissions resulting from lubricant oil and fuel combustion is presented below.

⁹⁵ <https://www.worldometers.info/co2-emissions/bosnia-and-herzegovina-co2-emissions/>

Data on the number of vehicles in 2022 and the projected number of vehicles in 2060, which are stated in Feasibility Study for Section Konjic–Mostar North, were used as input data for the calculation of CO₂ emissions from vehicles⁹⁶. The assumed number of vehicles that will operate in 2032 was calculated based on data from the Auto-moto Club of Bosnia and Herzegovina on the increase in the number of registered vehicles in 2021 compared to 2020, with the assumption that this growth trend will be maintained until 2032. Data on the share of individual types of vehicles in total number of vehicles are taken from the Traffic Study for Section Konjic – Mostar North. From the Report on number of registered vehicles in 2021⁹⁷, the necessary data on the number of registered vehicles on diesel and petrol/gas, as well as the type of engine (conventional, euro 1, euro 2, etc) were taken, in order to establish the value of CO₂ emission factor for each fuel and engine type according to the instruction of the European Environment Agency⁹⁸.

CO₂ emissions as a result of lubricant oil combustion

Input data for calculation of CO₂ emissions from vehicles, as a result of lubricant oil combustion, are shown in the Table 9-20.

The percentage of registered diesel and petrol vehicles for the baseline scenario (2022) was sourced from the Report on number of registered vehicles in 2021⁹⁹. Based on available scientific data¹⁰⁰ regarding the electromobility sector in BiH, it is projected that electric vehicles will make up approx. 1.08% of the fleet by 2032 and 33.37% by 2060. While no official projections exist for the future share of diesel and petrol vehicles, it is assumed that the increase of electric vehicles will primarily replace diesel vehicles, accompanied by a slight increase in petrol/gas vehicle registrations. Consequently, the share of registered diesel vehicles is estimated to decline to 68% by 2032 and 35% by 2060, while the share of petrol/gas vehicles is expected to reach 30.92% and 31.36%, respectively, in the same years.

Please note that the calculation also includes electricity consumption by electric vehicles and the associated emissions.

⁹⁶ Taking into account the presented baseline data on the number of vehicles in 2015 and the predicted traffic growth rate in the period 2020–2025.

⁹⁷ BIHAMK, Information on the registered road vehicles in BiH in the period January–December 2021, March 2022

⁹⁸ EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 – Update October 2020

⁹⁹ BIHAMK, Information on the registered road vehicles in BiH in the period January–December 2021, March 2022

¹⁰⁰ Bico E., Bešić J., Damadžić A. & Harbas N, Electromobility in BiH, November 2023

Trobradović M, Sehović J., Pervan N. & Blažević A, Assessment of the Impact of Vehicle Electrification on the Increase in Total Electrical Energy Consumption in Bosnia and Herzegovina, June 2025

Table 9-20: Input data for calculation of CO₂ emissions from vehicles as a result of lubricant oil combustion

Vehicle type	Fuel type	Engine	Vehicle number per day			Emission factor, gCO _{2e} /km
			2022	2032	2060	
Passenger vehicles (including vehicles with trailers)	Diesel	conventional	746	973	1,435	0.663
		euro 1	134	175	258	0.596
		euro 2	352	459	677	0.530
		euro 3	1,731	2,258	3,330	0.464
		euro 4	1,716	2,238	3,301	0.398
		euro 5	1,087	1,418	2,091	0.398
		euro 6	529	690	1,017	0.398
	Petrol/gas	conventional	278	442	1,297	0.663
		euro 1	50	80	233	0.596
		euro 2	131	209	612	0.530
		euro 3	645	1,027	3,009	0.464
		euro 4	640	1,018	2,983	0.398
		euro 5	405	645	1,890	0.398
		euro 6	197	314	919	0.398
Buses	Passenger buses	conventional	14	20	57	2.650
		euro 1	3	4	10	2.050
		euro 2	7	9	27	1.480
		euro 3	33	46	132	0.861
		euro 4	33	46	131	0.265
		euro 5	21	29	83	0.265
		euro 6	10	14	40	0.265
	Diesel	conventional	13	17	25	0.663
		euro 1	2	3	4	0.596
		euro 2	6	8	12	0.530
		euro 3	30	39	57	0.464
		euro 4	29	38	57	0.398
		euro 5	19	24	36	0.398
		euro 6	9	12	17	0.398
Smaller trucks	Petrol/gas	conventional	5	8	22	0.663
		euro 1	1	1	4	0.596

OFFICIAL USE

Vehicle type	Fuel type	Engine	Vehicle number per day			Emission factor, gCO _{2e} /km
			2022	2032	2060	
Medium and large trucks	Diesel	euro 2	2	4	10	0.530
		euro 3	11	18	52	0.464
		euro 4	11	17	51	0.398
		euro 5	7	11	32	0.398
		euro 6	3	5	16	0.398
		conventional	30	39	57	0.486
		euro 1	5	7	10	0.486
	Petrol/gas	euro 2	14	18	27	0.486
		euro 3	69	89	132	0.486
		euro 4	68	89	131	0.486
		euro 5	43	56	83	0.486
		euro 6	21	27	40	0.486
		conventional	11	18	51	1.990
		euro 1	2	3	9	1.990

Considering the length of the M17 main road section (approx. 63.7 km) for baseline conditions and construction period and that the length of the motorway section is 34.25 km for project scenarios, as well as that both main road and motorway section are or will be open 365 days a year for traffic, total CO₂ emissions as a result of lubricant oil combustion from vehicle engines can be calculated using the equation:

$$E_{\text{vehicles}} = \text{Number of vehicles} \cdot \text{Emission factor} \left(\frac{\text{gCO}_{2e}}{\text{km}} \right) \cdot \text{Section length (km)} \\ \cdot \text{Number of operating days per year} \left(\frac{\text{days}}{\text{year}} \right)$$

Results are presented in Table 9-21. For project scenarios (in case the motorway is constructed), emissions are calculated based on data from the Feasibility Study¹⁰¹ that 70% of vehicles will use the motorway, and 30% will continue to use the main road M17.

¹⁰¹ Feasibility Study Section: Konjic (loop Ovcari) – loop Mostar North, 2016

Table 9-21: *CO₂ emissions as a result of lubricant oil combustion*

CO ₂ emissions as a result of lubricant oil combustion (tons/year)						
Baseline conditions (2022)	Construction period (2022-2032)	Project scenario 1 (2032) the motorway is not constructed	Project scenario 2 (2032) the motorway is constructed	Project scenario 3 (2060) the motorway is not constructed	Project scenario 4 (2060) the motorway is constructed	
103.25	123.41 ¹⁰²	143.57	97.11	292.43	197.79	

CO₂ emissions as a result of fuel combustion

Input data for calculation of CO₂ emissions from vehicles, as a result of fuel combustion, are shown in the Table 9-22. Based on fuel consumption for different engine and fuel types, as well as emission factor for different road transport fossil fuels, emission factor per km section length is calculated as:

$$\begin{aligned}
 \text{Emission factor} & \left(\frac{gCO_{2e}}{km} \right) \\
 & = \text{Fuel consumption} \left(\frac{g}{km} \right) \\
 & \cdot \text{Emission factor for different road transport fossil fuels} \left(\frac{gCO_{2e}}{g \text{ fuel}} \right)
 \end{aligned}$$

Table 9-22: *Input data for calculation of CO₂ emissions from vehicles as a result of fuel combustion*

Vehicle type	Fuel type	Engine	Vehicle number per day			Fuel consumption, g/km	Emission factor, gCO _{2e} /km
			2022	2032	2060		
Passenger vehicles (including vehicles with trailers)	Diesel	conventional	746	973	1,435	63	199.647
		euro 1	134	175	258	55	174.295
		euro 2	352	459	677	55	174.295
		euro 3	1,731	2,258	3,330	55	174.295
		euro 4	1,716	2,238	3,301	38	120.422
		euro 5	1,087	1,418	2,091	38	120.422
		euro 6	529	690	1,017	38	120.422
	Petrol/gas	conventional	278	442	1,297	65	205.985
		euro 1	50	80	233	56	177.464
		euro 2	131	209	612	56	177.464
		euro 3	645	1,027	3,009	56	177.464

¹⁰² Average annual value in the period 2022-2032.

OFFICIAL USE

Vehicle type	Fuel type	Engine	Vehicle number per day			Fuel consumption, g/km	Emission factor, gCO _{2e} /km
			2022	2032	2060		
Buses	Passenger buses	euro 4	640	1,018	2,983	49	155.281
		euro 5	405	645	1,890	49	155.281
		euro 6	197	314	919	49	155.281
Smaller trucks	Diesel	conventional	14	20	57	366	1159.854
		euro 1	3	4	10	301	953.869
		euro 2	7	9	27	301	953.869
		euro 3	33	46	132	301	953.869
		euro 4	33	46	131	301	953.869
		euro 5	21	29	83	301	953.869
		euro 6	10	14	40	301	953.869
Medium and large trucks	Petrol/gas	conventional	13	17	25	89	282.041
		euro 1	2	3	4	80	253.52
		euro 2	6	8	12	80	253.52
		euro 3	30	39	57	80	253.52
		euro 4	29	38	57	80	253.52
		euro 5	19	24	36	80	253.52
		euro 6	9	12	17	80	253.52
	Diesel	conventional	5	8	22	85	269.365
		euro 1	1	1	4	70	221.83
		euro 2	2	4	10	70	221.83
		euro 3	11	18	52	70	221.83
		euro 4	11	17	51	70	221.83
		euro 5	7	11	32	70	221.83
		euro 6	3	5	16	70	221.83

Vehicle type	Fuel type	Engine	Vehicle number per day			Fuel consumption, g/km	Emission factor, gCO _{2e} /km
			2022	2032	2060		
	Petrol/gas	conventional	11	18	51	182	576.758
		euro 1	2	3	9	155	491.195
		euro 2	5	8	24	155	491.195
		euro 3	26	41	119	155	491.195
		euro 4	25	40	118	155	491.195
		euro 5	16	26	75	155	491.195
		euro 6	8	12	36	155	491.195

Considering the length of the M17 main road section (approx. 63.7 km) for baseline conditions and construction period and that the length of the motorway section is 34.25 km for project scenarios, as well as that both main road and motorway section are or will be open 365 days a year for traffic, total CO₂ emissions as a result of vehicle fuel combustion can be calculated using the equation:

$$E_{\text{vehicles}} = \text{Number of vehicles} (-) \cdot \text{Emission factor} \left(\frac{gCO_{2e}}{km} \right) \cdot \text{Section length (km)} \\ \cdot \text{Number of operating days per year} \left(\frac{\text{days}}{\text{year}} \right)$$

Results are presented in Table 9-23. For project scenarios (in case the motorway is constructed), emissions are calculated based on data from the Feasibility Study¹⁰³ that 70% of vehicles will use the motorway, and 30% will continue to use the main road M17.

Table 9-23: CO₂ emissions as a result of fuel combustion

CO ₂ emissions as a result of fuel combustion (tons/year)						
Baseline conditions (2022)	Construction period (2022-2032)	Project scenario 1 (2032) the motorway is not constructed	Project scenario 2 (2032) the motorway is constructed	Project scenario 3 (2060) the motorway is not constructed	Project scenario 4 (2060) the motorway is constructed	
38,588.69	46,090.90 ¹⁰⁴	53,593.10	36,248.96	108,746.50	73,553.26	

Although there is an increase in emissions by years due to the increase in the number of vehicles (projected increase of 300.3% in 2060 compared to 2022), it is obvious that the construction of this motorway will have a positive impact on the reduction of GHG emissions compared to the use of the existing M17 main road.

¹⁰³ Feasibility Study Section: Konjic (loop Ovcari) – loop Mostar North, 2016

¹⁰⁴ Average annual value in the period 2022-2032.

Calculation of CO₂ emissions from lightning

The calculation of CO₂ emissions from lighting was done for two project scenarios – 2032 and 2060 in case the motorway is constructed. CO₂ emissions from lighting on the main road M17 have been neglected because the small length of the section passes through populated areas, where lighting is installed. The rest of the M17 section has no lighting installed. According to the available data, it is assumed that the distance between the two bulbs on the motorway section would be 50 m¹⁰⁵, which for the total section length of 34.25 km, gives 1,370 bulbs on both sides. The power of the light bulb of 150 W was adopted¹⁰⁵, as well as the average number of working hours during the day (10 hours). Electricity is used to drive the light bulbs. The average CO₂ emission factor in 2032 was adopted considering that most electricity is produced from coal, and that by 2060 most electricity will be produced from renewable sources¹⁰⁶.

The input data for the first project scenario (2032) are shown in Table 9-24.

Table 9-24: Input data for the calculation of CO₂ emissions from lighting in 2032

Type of lighting/ bulb	Power per bulb, W	Number of bulbs	Number of working hours per day, h	Emission factor, kgCO _{2e} /kWh
LED	150	1,370	10	0,376

Total CO₂ emissions from the use of lighting are calculated using the following formula:

$$E_{lighting} = \text{Bulb power (W)} \cdot \text{Number of bulbs} \cdot \text{Number of operating hours per day} \cdot \text{Number of days per year} \cdot \text{Emission factor}$$

$$E_{lighting} = \text{Bulb power (W)} \cdot \text{Number of bulbs} \cdot \frac{\text{hours}}{\text{day}} \cdot \frac{365 \text{ days}}{\text{year}} \cdot \frac{\text{kgCO}_{2e}}{\text{kWh}}$$

The predicted total CO₂ emissions from **lighting** in **2032** are **282,03 tons**.

The same methodology is used to calculate CO₂ emissions from lighting in 2060.

Table 9-25: Input data for the calculation of CO₂ emissions from lighting in 2060

Type of lighting/ bulb	Power per bulb, W	Number of bulbs	Number of working hours per day, h	Emission factor, kgCO _{2e} /kWh
LED	150	1,370	10	0,0042

Total CO₂ emissions from **lighting** in **2060** are **3,15 tons**.

¹⁰⁵ <https://www.eneltec-led.com/news/led-street-light-power-pole-and-height-and-road-width.html>

¹⁰⁶ http://www.encert-eihp.org/wp-content/uploads/2014/11/0-FAKTORI_primarne_energije.pdf

However, considering the expected reduction of traffic on currently used main road section M17 from Konjic to Mostar and the reduction of congestion and delays, as well as shortened travel time, and thus on the other hand the reduction of CO₂ emissions, the positive impacts of construction of this motorway section are justified. A summary of the expected CO₂ emissions is presented in Table 9-26.

Please note that the total emissions from construction materials were divided by the expected duration of the works (10 years) in order to determine the average annual emissions.

Table 9-26: Expected CO₂ emissions for baseline conditions, construction period and project scenarios (tCO_{2e}/year)

Parameter		Baseline conditions (2022)		Construction period (2022-2032)		Project scenario 1 (2032) the motorway is not constructed		Project scenario 2 (2032) the motorway is constructed		Project scenario 3 (2060) the motorway is not constructed		Project scenario 4 (2060) the motorway is constructed	
		Construction material	Construction equipment	Construction material	Construction equipment	Construction material	Construction equipment	Construction material	Construction equipment	Construction material	Construction equipment	Construction material	Construction equipment
Vehicles	Construction material	0.00	1,835.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vehicles	Construction equipment	0.00	13,299.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vehicles	Vehicles	38,691.94	46,214.31	53,736.67	36,346.07	109,038.93	73,751.06						
Lighting	Construction material	0.00	0.00	0.00	282.03	0.00	3.15						
Total		38,691.94	61,349.18	53,736.67	36,628.10	109,038.93	73,754.21						

Although there is an increase in emissions by years due to the increase in the number of vehicles, it is obvious that the construction of this motorway will have a positive impact on the reduction of GHG emissions compared to the use of the existing M17 main road.

A summary of the expected percentage CO₂ emissions reduction in the operational phase, as a result of motorway construction, is presented in Table 9-27.

Table 9-27: Expected CO₂ emissions reduction in the operational phase as a result of motorway construction

CO ₂ emissions reduction as a result of the motorway construction		
Year	tCO ₂ /year	%
2032	17,108.58	31.84%
2060	35,284.72	32.36%

As presented in Table 9-27, the construction of the motorway section for both project scenarios will result in reduction of operational CO₂ emission of approx. 32%. Considering that reducing traffic speed limit on motorways to 100 kilometres per hour and enforcing it appropriately reduces emissions by about 18%¹⁰⁷, as well as that the carbon emissions of vehicles in congested traffic flow are 10-200% higher than those in free-flow traffic conditions¹⁰⁸, a reduction in CO₂ emissions would be greater. Considering that the section of the M17 main road is characterised by congested traffic flow with occasional traffic jams and taking into account the minimum increase in emissions of 10%, as well as the mentioned reduction of emissions on the motorway, the total cumulative and percentage reduction of emissions in 2032 and 2060 are presented in Table 9-28.

Table 9-28: Expected CO₂ emissions reduction in the operational phase as a result of motorway construction considering reduced traffic speeds on motorway and congested traffic flow on M17 main road section

CO ₂ emissions reduction as a result of the motorway construction		
Year	tCO ₂ /year	%
2032	24,510.66	41.47%
2060	50,304.54	41.94%

Taking into account that CO₂ emissions in BiH from the transport sector in 2016 amounted to 3,363,309.72 tons¹⁰⁹, the project implementation would contribute to the total emissions from transport in 2032 with about 1.1%, and in 2060 with about 2.2%.

The sensitivity of receptors to greenhouse gas emissions is related to the potential of natural disasters caused by climate change. The main project should address in detail the issues of resilience to climate change, such as motorway construction (culverts, bridges, etc) that can accommodate 100-year flood waters, drainage system capacities, slope protection and stabilisation, application material stabilisation, etc.

¹⁰⁷ Asian Development Bank, Methodology for Estimating Carbon Footprint of Road Projects – Case Study: India, 2010

¹⁰⁸ Y. Dong, J. Xu, X. Liu, C. Gao, H. Ru & Z. Duan, Carbon Emissions and Expressway Traffic Flow Patterns in China, 2019

¹⁰⁹ <https://www.worldometers.info/co2-emissions/bosnia-and-herzegovina-co2-emissions/>

Based on the previously presented information, an assessment of the climate risks and impacts of climate change and their significance on the project area was performed (Table 9-29).

Table 9-29: Summary of potential impacts on climate and assessment of their significance before mitigation

Phase	Type of potential impact	Adverse/ Beneficial	Magnitude	Sensitivity	Impact evaluation	Significance (before mitigation)
Climatic factors						
Pre- construction	No impacts	-	-	-	-	-
Construction	Floods, landslides and rock falls <ul style="list-style-type: none"> ➢ Endanger the stability of terrain that is the basis for the construction of the motorway ➢ If the watercourse or part of it is buried by a landslide, significant harm to the surrounding ecosystem can occur ➢ H&S risks for workers ➢ Damage of construction equipment 	Adverse	-	-	Major	Significant
Construction	Extreme heat and droughts <ul style="list-style-type: none"> ➢ Heat stroke and increased risk of fire ➢ Land subsidence during the construction phase (in combination with heavy rainfalls) ➢ Ignition of equipment containing hazardous substances ➢ H&S risks for workers ➢ Damage of construction 	Adverse	-	-	Minor	Not significant

Phase	Type of potential impact	Adverse/ Beneficial	Magnitude	Sensitivity	Impact evaluation	Significance (before mitigation)
	equipment (melting)					
Construction	Fires ➢ Ignition of equipment containing hazardous substances ➢ Dense smoke and increased GHG emissions ➢ H&S risks for workers ➢ Damage of construction equipment (melting)	Adverse	-	-	Moderate	Significant
Construction	Heavy snow/ice events ➢ Damage of construction equipment and delay construction activities ➢ H&S risks for workers	Adverse	-	-	Moderate	Significant
Construction	GHG emissions ➢ Environmental pollution due to GHG emissions from construction equipment and vehicles	Adverse	Negligible	Negligible	Negligible	Not significant
Operation	Floods, landslides and rock falls ➢ Physical damage to the transport infrastructure ➢ Destroyed vehicles ➢ Disruption to traffic flow ➢ Interrupted plumbing roads as well as underground installations ➢ H&S risks for users	Adverse	-	-	Major	Significant

Phase	Type of potential impact	Adverse/ Beneficial	Magnitude	Sensitivity	Impact evaluation	Significance (before mitigation)
Operation	Extreme heat and droughts <ul style="list-style-type: none"> > Increased risk of fire > Depletion of water supplies in the event of a drought, or increased use of groundwater can cause land subsidence > High temperatures can lead to the melting of the road surface mask, which further leads to the formation of ruts that destabilise the movement of vehicles, with an increase of GHG emissions > H&S risks for users 	Adverse	-	-	Minor	Significant
Operation	Fires <ul style="list-style-type: none"> > Physical damage to the transport infrastructure > Disruption to traffic flow > Fire smoke reduces the visibility and results in road closure > Rapidly spreading fires along the road can lead to car fires, and injury or even death of road users > Increase in GHG emissions > H&S risks for users 	Adverse	-	-	Moderate	Significant

OFFICIAL USE

Phase	Type of potential impact	Adverse/ Beneficial	Magnitude	Sensitivity	Impact evaluation	Significance (before mitigation)
Operation	Heavy snow/ice events ➢ Damage of pavements and drainage systems ➢ Increased accident risks, and disruption of traffic flow ➢ H&S risks for users	Adverse	-	-	Moderate	Significant
Operation	GHG emissions ➢ Environmental pollution due to vehicle traffic on the motorway section	Adverse	Moderate	Medium	Moderate	Significant

Note: For climate risks (climate adaptation aspect), only the final impact assessment is presented, without magnitude or sensitivity ratings, as a separate methodology, described in Chapter 9.3.1.1, was applied. For the GHG assessment (climate mitigation aspect), the methodology described in Chapter 5 was applied, which includes magnitude and sensitivity assessments and results in an overall impact evaluation.

9.4 Mitigation and Enhancement Measures

Mitigation and enhancement measures to address potential impacts of floods, landslides and rock falls identified in Table 9-29 above are:

- > During the Main Design development, the latest available climate and hydrological data from the Agency for the Watershed of the Adriatic Sea and the Federal Hydrometeorological Institute to be incorporated. Main Design to be developed following standards and parameters specified in the *Guidelines for Road Construction* developed by the Public Company "Ceste Federacije BiH" (2005) and the accompanying *Instructions for the Design, Procurement, Installation and Maintenance of Motorway Elements* developed by JPAC (2015).
- > In line with the *FBiH Rulebook on geotechnical research and testing and the organisation and content of geotechnical engineering missions*, complete geotechnical investigations (mission G21) for the entire motorway section. If conditionally stable terrain is identified, additional investigations (landslide monitoring) to be conducted to determine slope movements and implement appropriate structural measures, adapting the Project design to local terrain conditions. Special attention to be placed on Section 12, where potentially unstable terrain prone to landslides has been identified.
- > In line with the *FBiH Rulebook on geotechnical research and testing and the organisation and content of geotechnical engineering missions*, the Contractor to prepare a geotechnical implementation study (mission G31) and carry out monitoring of geotechnical works (mission G32), ensuring timely adaptation and optimisation of the Main Design to actual field conditions and the Contractor's methodology.
- > Conduct pre-construction rockfall analysis and implement mitigation measures to prevent soil erosion and dewatering, as stipulated in Chapter 13 Soil. Implement the same mitigation measures to prevent negative impacts on terrain stability by intrusion of groundwater and change of surface and groundwater flows, as stipulated in Chapter 7 Geology and Groundwater and Chapter 8 Surface Waters.
- > Implement recultivation and restoration as stipulated by **Biodiversity Management Plan** (BMP) and where possible reforest land within the Project area of influence.
- > Prepare and implement **Emergency Preparedness and Response Plan (EPRP)** as a part of CESMP for the construction phase. The Plan:
 - > Sets out key national and EU policies, laws and standards related to emergency response to reduce negative climate-related impacts on society or the environment;
 - > Defines roles and responsibilities;
 - > Identifies and classifies potential climate-related emergencies in the construction phase, including floods, landslides, extreme heat and droughts, fires and heavy snow/ice events, as well as spill management;
 - > Lists the activities, measures and equipment needed to respond to emergencies;
 - > Defines the implementation of trainings for emergency preparedness;
 - > Defines media ways of communication in emergency situations;

OFFICIAL USE

- > Defines the procedure of mitigation and recovery after emergency situations;
- > Defines the maintenance and control of this plan.
- > In case of noticeable wetting of the terrain in the lowest zones, make culverts in places to drain the accumulated waters.
- > In case of noticeable torrential flow of water from larger catchment areas on the construction site, collect and channel water through temporary or permanent channels and pipelines.
- > Ensure that all temporary structures, equipment, and machinery are located in areas that are not prone to flooding or in flood-prone zones with proper drainage systems in place.
- > In case of floods, landslides or erosion, mark affected areas and set up appropriate traffic signals.

Proposed mitigation and enhancement measures to address potential impacts of extreme heat, droughts, and fires in the construction phase identified in Table 9-29 above are:

- > Regularly control the state of fires in the project area by visual inspection and monitoring of news in local media, including monitoring of the index of danger from the occurrence and spread of forest fires on the website of Federal Hydrometeorological Institute¹¹⁰.
- > Store flammable materials in special heat-resistance containers.
- > Establish an effective fire detection and suppression system on-site, including fire extinguishers and sprinklers, particularly in areas where flammable materials and hazardous substances are stored.
- > In case of least fire danger, suspend works.
- > Schedule work during cooler hours in summer months – carry out physically demanding activities in early morning or late afternoon to reduce the risk of heat stress.
- > Prepare and implement **Emergency Preparedness and Response Plan (EPRP)**, as specified under item above.

For snow- and ice-related hazards, the following measures to be implemented during the construction phase:

- > Apply salt or other appropriate de-icing agents (e.g., calcium-magnesium acetate, magnesium chloride, sand) on construction roads, access points, and pedestrian walkways to prevent ice buildup and improve traction.
- > Reinforce temporary access roads in areas prone to freezing to ensure stability and navigability during winter conditions. This may include additional layers of gravel or geotextile material.
- > Ensure that all machinery, vehicles, and equipment are properly equipped to handle cold temperatures, including antifreeze in engines, battery checks, and ensuring proper function of hydraulic systems in freezing conditions.

¹¹⁰ <https://www.fhmzbih.gov.ba/latinica/AGRO/pozar.php>

Floods, landslides and rock falls can lead to significant effects in the operational phase, as identified in Table 9-29 above. Proposed mitigation and enhancement measures are:

- > Perform periodic geotechnical monitoring with the aim of landslide control.
- > In case of reconstruction, implement reclamation and restoration as stipulated by **Biodiversity Management Plan** (BMP) and where possible reforest land within the Project area of influence.
- > Prepare and implement **Operational Emergency Preparedness and Response Plan** (OEPRP) for the operational phase. The Plan:
 - > Sets out key national and EU policies, laws and standards related to emergency response to reduce negative climate-related impacts on society or the environment;
 - > Defines roles and responsibilities;
 - > Identifies and classifies potential emergencies in operation phase, including climate-related hazards (floods, landslides, rock falls, extreme heat and droughts, fires, heavy snow/ice events) occurrence, spill management and fire response;
 - > Lists the activities, measures and equipment needed to respond to emergencies (e.g., the following protection measures should be applied: in case of minor floods/landslides in the Project area, carry out a risk assessment and, if necessary, stop and/or divert traffic; in case of traffic accidents and spillage of hazardous substances – suspend and/or divert traffic, catch leaking liquid into intervention vessels, use special sorbents and others substances for decontamination of the terrain and remediation of consequences at the place of spillage of hazardous substances, use fire-protection equipment);
 - > Defines the implementation of trainings for emergency preparedness;
 - > Defines media ways of communication in emergency situations;
 - > Defines the procedure of mitigation and recovery after emergency situations;
 - > Defines the maintenance and control of this plan.
- > Regular inspection of plumbing installations to prevent leaks.
- > Regularly check the drainage system for the management of surface and rainwater from the road in order to prevent overflow in the form of concentrated torrents.
- > In case of noticeable torrential flow of water from larger catchment areas, collect and channel water through temporary or permanent channels and pipelines.
- > In case of landslides/rock falls, mark the terrain and set up appropriate traffic signals.
- > In the event of a landslide or flood that poses a risk to user safety, the motorway (section) to be closed and rehabilitation, stabilisation, and adaptation measures undertaken as soon as possible. Monitoring of the landslide area to be carried out to assess terrain stability and the potential for further landslide/erosion movement or expansion.
- > Establish an appropriate program of regular maintenance and inspection of road infrastructure.

Extreme heat and droughts can cause negative impacts in the operational phase as identified in Table 9-29 above. Proposed mitigation and enhancement measures are:

- > Prepare **Operational Emergency Preparedness and Response Plan** (OEPRP), as specified above.
- > In case of reconstruction, use high quality road construction materials, which are resistant to high temperatures.
- > Set appropriate signals or motivating messages to help drivers adapt to driving conditions on the road and according to their psychophysical abilities.
- > Control water leakage, to prevent its disappearance in extremely dry periods, which can cause land subsidence.
- > Restrict the movement of vehicles transporting dangerous substances during periods of high temperatures.
- > Establish an appropriate program of regular control maintenance and inspection of road infrastructure.

In case of fires, fire smoke can reduce the visibility and cause physical damage to transport infrastructure, proposed mitigation and enhancement measures to address potential impacts are:

- > Regularly control the state of fires in the project area by visual inspection and monitoring of news in local media, including monitoring of the index of danger from the occurrence and spread of forest fires on the website of Federal Hydrometeorological Institute¹¹¹.
- > Prepare **Operational Emergency Preparedness and Response Plan** (OEPRP) as specified above.
- > Install fire extinguishers in tunnels.
- > Restrict the movement of vehicles transporting dangerous substances in the period possible for fire.
- > Avoid planting resinous trees along road section.
- > In case of least fire danger, divert traffic.

For snow- and ice-related hazards, the following measures to be implemented:

- > Regularly clear snow and ice from the road surface, pavements, and drainage systems to maintain safe driving conditions.
- > Conduct regular inspections of pavements, bridges, and drainage systems before, during, and after snow/ice events to assess any damage or accumulation that could pose a hazard to motorists.
- > Apply de-icing agents (e.g., calcium-magnesium acetate, magnesium chloride, sand) to the road surface before and after snow events to prevent ice formation and improve traction.
- > Implement reduced speed limits and temporary road closures in case of extreme snow/ice conditions to reduce the risk of accidents and improve safety.

With the commissioning of the motorway section, a significant increase in GHG emissions is expected. Proposed mitigation and enhancement measures include:

¹¹¹ <https://www.fhmzbih.gov.ba/latinica/AGRO/pozar.php>

- > Implement recultivation and restoration as stipulated by **Biodiversity Management Plan** (BMP) and where possible reforest land within the Project area of influence.
- > Encourage drivers with motivational messages on electronic displays to maintain a consistent speed of 110 km/h for the benefit of reducing GHG emissions.